16/08/2022
đ āĻāĻŖāĻŋāϤ āϏāĻŽāĻžāϧāĻžāύ đ
1.đˇ (a+b)²= a²+2ab+b²
2.đˇ (a+b)²= (a-b)²+4ab
3.đˇ (a-b)²= a²-2ab+b²
4.đˇ (a-b)²= (a+b)²-4ab
5.đˇ a² + b²= (a+b)²-2ab.
6.đˇ a² + b²= (a-b)²+2ab.
7.đˇ a²-b²= (a +b)(a -b)
8.đˇ 2(a²+b²)= (a+b)²+(a-b)²
9.đˇ 4ab = (a+b)²-(a-b)²
10.đˇ ab = {(a+b)/2}²-{(a-b)/2}²
11.đˇ (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12.đˇ (a+b)Âŗ = aÂŗ+3a²b+3ab²+bÂŗ
13.đˇ (a+b)Âŗ = aÂŗ+bÂŗ+3ab(a+b)
14.đˇ a-b)Âŗ= aÂŗ-3a²b+3ab²-bÂŗ
15.đˇ (a-b)Âŗ= aÂŗ-bÂŗ-3ab(a-b)
16.đˇ aÂŗ+bÂŗ= (a+b) (a²-ab+b²)
17.đˇ aÂŗ+bÂŗ= (a+b)Âŗ-3ab(a+b)
18.đˇ aÂŗ-bÂŗ = (a-b) (a²+ab+b²)
19.đˇ aÂŗ-bÂŗ = (a-b)Âŗ+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² â 2(ab + bc + ca)
21. 21.đˇ 2 (ab + bc + ca) = (a + b + c)² â (a² + b² + c²)
22. 22.đˇ (a + b + c)Âŗ = aÂŗ + bÂŗ + cÂŗ + 3 (a + b) (b + c) (c + a)
23. 23.đˇ aÂŗ + bÂŗ + cÂŗ â 3abc =(a+b+c)(a² + b²+ c²âabâbcâ ca)
24. 24.đˇ a3 + b3 + c3 â 3abc =ÂŊ (a+b+c) { (aâb)²+(bâc)²+(câa)²}
25. 25.đˇ(x + a) (x + b) = x² + (a + b) x + ab
26. 26.đˇ (x + a) (x â b) = x² + (a â b) x â ab
27. 27.đˇ (x â a) (x + b) = x² + (b â a) x â ab
28. 28.đˇ (x â a) (x â b) = x² â (a + b) x + ab
29. 29.đˇ (x+p) (x+q) (x+r) = xÂŗ + (p+q+r) x² + (pq+qr+rp) x +pqr
30. 30.đˇ bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)
31. 31.đˇ a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)
32. 32.đˇ a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)
33. 33.đˇ aÂŗ (b - c) + bÂŗ (c-a) +cÂŗ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)
34. 34.đˇ b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35. 35.đˇ (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)
36. 36.đˇ (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
37. đˇđˇāĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰđˇ
38. 1.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = (āĻĻā§āϰā§āĻā§āϝ à āĻĒā§āϰāϏā§āĻĨ) āĻŦāϰā§āĻ āĻāĻāĻ
39. 2.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 2 (āĻĻā§āϰā§āĻā§āϝ+āĻĒā§āϰāϏā§āĻĨ)āĻāĻāĻ
40. 3.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖ = â(āĻĻā§āϰā§āĻā§āĻ¯Â˛+āĻĒā§āϰāϏā§āĻĨ²)āĻāĻāĻ
41. 4.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĻā§āϰā§āĻā§āϝ= āĻā§āώā§āϤā§āϰāĻĢāĻ˛ÃˇāĻĒā§āϰāϏā§āϤ āĻāĻāĻ
42. 5.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĒā§āϰāϏā§āϤ= āĻā§āώā§āϤā§āϰāĻĢāĻ˛ÃˇāĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
43. đˇđˇāĻŦāϰā§āĻāĻā§āώā§āϤā§āϰđˇ
44. 1.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = (āϝ⧠āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ)² āĻŦāϰā§āĻ āĻāĻāĻ
45. 2.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 4 à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
46. 3.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖ=â2 à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
47. 4.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻŦāĻžāĻšā§=âāĻā§āώā§āϤā§āϰāĻĢāϞ āĻŦāĻž āĻĒāϰāĻŋāϏā§āĻŽāĻžÃˇ4 āĻāĻāĻ
48. đˇđˇāϤā§āϰāĻŋāĻā§āĻđˇ
49. 1.āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = âžÃ(āĻŦāĻžāĻšā§)²
50. 2.āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = â3/2Ã(āĻŦāĻžāĻšā§)
51. 3.āĻŦāĻŋāώāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = âs(s-a) (s-b) (s-c)
52. āĻāĻāĻžāύ⧠a, b, c āϤā§āϰāĻŋāĻā§āĻā§āϰ āϤāĻŋāύāĻāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ, s=āĻ
āϰā§āϧāĻĒāϰāĻŋāϏā§āĻŽāĻž
53. â
āĻĒāϰāĻŋāϏā§āĻŽāĻž 2s=(a+b+c)
54. 4āϏāĻžāϧāĻžāϰāĻŖ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ
55. (āĻā§āĻŽāĻŋÃāĻāĻā§āĻāϤāĻž) āĻŦāϰā§āĻ āĻāĻāĻ
56. 5.āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ(aÃb)
57. āĻāĻāĻžāύ⧠āϤā§āϰāĻŋāĻā§āĻā§āϰ āϏāĻŽāĻā§āĻŖ āϏāĻāϞāĻā§āύ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧ a āĻāĻŦāĻ b.
58. 6.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2â4b²-a²/4 āĻāĻāĻžāύā§, a= āĻā§āĻŽāĻŋ; b= āĻ
āĻĒāϰ āĻŦāĻžāĻšā§āĨ¤
59. 7.āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = 2(āĻā§āώā§āϤā§āϰāĻĢāϞ/āĻā§āĻŽāĻŋ)
60. 8.āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ
āϤāĻŋāĻā§āĻ =â āϞāĻŽā§āĻŦ²+āĻā§āĻŽāĻŋ²
61. 9.āϞāĻŽā§āĻŦ =âāĻ
āϤāĻŋāĻā§āϲ-āĻā§āĻŽāĻŋ²
62. 10.āĻā§āĻŽāĻŋ = âāĻ
āϤāĻŋāĻā§āϲ-āϞāĻŽā§āĻŦ²
63. 11.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = âb² - a²/4
64. āĻāĻāĻžāύ⧠a= āĻā§āĻŽāĻŋ; b= āϏāĻŽāĻžāύ āĻĻā§āĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝāĨ¤
65. 12.â
āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž=āϤāĻŋāύ āĻŦāĻžāĻšā§āϰ āϏāĻŽāώā§āĻāĻŋ
66. đˇđˇāϰāĻŽā§āĻŦāϏđˇ
67. 1.āϰāĻŽā§āĻŦāϏā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊà (āĻāϰā§āĻŖāĻĻā§āĻāĻāĻŋāϰ āĻā§āĻŖāĻĢāϞ)
68. 2.āϰāĻŽā§āĻŦāϏā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 4à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ
69. đˇđˇāϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻđˇ
70. 1.āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž =
71. 2.āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 2Ã(āϏāύā§āύāĻŋāĻšāĻŋāϤ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻŽāώā§āĻāĻŋ)
72. đˇđˇāĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽđˇ
73. 1. āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ =ÂŊÃ(āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻŦāĻžāĻšā§ āĻĻā§āĻāĻāĻŋāϰ āϝāĻžā§āĻāĻĢāϞ)ÃāĻāĻā§āĻāϤāĻž
74. đˇđˇ āĻāύāĻđˇ
75. 1.āĻāύāĻā§āϰ āĻāύāĻĢāϞ = (āϝā§āĻā§āύ āĻŦāĻžāĻšā§)Âŗ āĻāύ āĻāĻāĻ
76. 2.āĻāύāĻā§āϰ āϏāĻŽāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 6à āĻŦāĻžāĻšā§Â˛ āĻŦāϰā§āĻ āĻāĻāĻ
77. 3.āĻāύāĻā§āϰ āĻāϰā§āĻŖ = â3ÃāĻŦāĻžāĻšā§ āĻāĻāĻ
78. đˇđˇāĻāϝāĻŧāϤāĻāύāĻđˇ
79. 1.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āĻāύāĻĢāϞ = (āĻĻā§ā§°ā§āĻāĻžÃāĻĒā§āϰāϏā§āϤÃāĻāĻā§āĻāϤāĻž) āĻāύ āĻāĻāĻ
80. 2.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āϏāĻŽāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāϰā§āĻ āĻāĻāĻ
81. [ āϝā§āĻāĻžāύ⧠a = āĻĻā§āϰā§āĻā§āϝ b = āĻĒā§āϰāϏā§āϤ c = āĻāĻā§āĻāϤāĻž ]
82. 3.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āĻāϰā§āĻŖ = âa²+b²+c² āĻāĻāĻ
83. 4. āĻāĻžāϰāĻŋ āĻĻā§āĻāϝāĻŧāĻžāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2(āĻĻā§āϰā§āĻā§āϝ + āĻĒā§āϰāϏā§āĻĨ)ÃāĻāĻā§āĻāϤāĻž
84. đˇđˇāĻŦā§āϤā§āϤđˇ
85. 1.āĻŦā§āϤā§āϤā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = Īr²=22/7r² {āĻāĻāĻžāύ⧠Ī=āϧā§āϰā§āĻŦāĻ 22/7, āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ= r}
86. 2. āĻŦā§āϤā§āϤā§āϰ āĻĒāϰāĻŋāϧāĻŋ = 2Īr
87. 3. āĻā§āϞāĻā§āϰ āĻĒā§āώā§āĻ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 4Īr² āĻŦāϰā§āĻ āĻāĻāĻ
88. 4. āĻā§āϞāĻā§āϰ āĻāϝāĻŧāϤāύ = 4ĪrÂŗÃˇ3 āĻāύ āĻāĻāĻ
89. 5. h āĻāĻā§āĻāϤāĻžāϝāĻŧ āϤāϞāĻā§āĻā§āĻĻā§ āĻā§āĻĒāύā§āύ āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ = âr²-h² āĻāĻāĻ
90. 6.āĻŦā§āϤā§āϤāĻāĻžāĻĒā§āϰ āĻĻā§āϰā§āĻā§āϝ s=Īrθ/180° ,
91. āĻāĻāĻžāĻ¨ā§ Î¸ =āĻā§āĻŖ
92. đˇāϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰ / āĻŦā§āϞāύđˇ
93. āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻā§āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ r āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž h āĻāϰ āĻšā§āϞāĻžāύ⧠āϤāϞā§āϰ āĻāĻā§āĻāϤāĻž l āĻšāϞā§,
94. 1.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻāϝāĻŧāϤāύ = Īr²h
95. 2.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻŦāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (āϏāĻŋāĻāϏāĻ) = 2ĪrhāĨ¤
96. 3.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻĒā§āώā§āĻ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (āĻāĻŋāĻāϏāĻ) = 2Īr (h + r)
97. đˇāϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āĻā§āĻŖāĻđˇ
98. āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āĻā§āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ r āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž h āĻāϰ āĻšā§āϞāĻžāύ⧠āϤāϞā§āϰ āĻāĻā§āĻāϤāĻž l āĻšāϞā§,
99. 1.āĻā§āĻŖāĻā§āϰ āĻŦāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ= Īrl āĻŦāϰā§āĻ āĻāĻāĻ
100. 2.āĻā§āĻŖāĻā§āϰ āϏāĻŽāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ= Īr(r+l) āĻŦāϰā§āĻ āĻāĻāĻ
101. 3.āĻā§āĻŖāĻā§āϰ āĻāϝāĻŧāϤāύ= â
Īr²h āĻāύ āĻāĻāĻ
102. đˇâŽāĻŦāĻšā§āĻā§āĻā§āϰ āĻāϰā§āĻŖā§āϰ āϏāĻāĻā§āϝāĻž= n(n-3)/2
103. âŽāĻŦāĻšā§āĻā§āĻā§āϰ āĻā§āĻŖāĻā§āϞāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ=(2n-4)āϏāĻŽāĻā§āĻŖ
104. āĻāĻāĻžāύ⧠n=āĻŦāĻžāĻšā§āϰ āϏāĻāĻā§āϝāĻž
105. â
āĻāϤā§āϰā§āĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž=āĻāĻžāϰ āĻŦāĻžāĻšā§āϰ āϏāĻŽāώā§āĻāĻŋ
106. đˇāϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§āĻđˇ
107. 1. sinθ=⤞āĻŽā§āĻŦ/āĻ
āϤāĻŋāĻā§āĻ
108. 2. cosθ=āĻā§āĻŽāĻŋ/āĻ
āϤāĻŋāĻā§āĻ
109. 3. taneθ=⤞āĻŽā§āĻŦ/āĻā§āĻŽāĻŋ
110. 4. cotθ=āĻā§āĻŽāĻŋ/āϞāĻŽā§āĻŦ
111. 5. secθ=āĻ
āϤāĻŋāĻā§āĻ/āĻā§āĻŽāĻŋ
112. 6. cosecθ=āĻ
āϤāĻŋāĻā§āĻ/āϞāĻŽā§āĻŦ
113. 7. sinθ=1/cosecθ, cosecθ=1/sinθ
114. 8. cosθ=1/secθ, secθ=1/cosθ
115. 9. tanθ=1/cotθ, cotθ=1/tanθ
116. 10. sin²θ + cos²θ= 1
117. 11. sin²θ = 1 - cos²θ
118. 12. cos²θ = 1- sin²θ
119. 13. sec²θ - tan²θ = 1
120. 14. sec²θ = 1+ tan²θ
121. 15. tan²θ = sec²θ - 1
122. 16, cosec²θ - cot²θ = 1
123. 17. cosec²θ = cot²θ + 1
124. 18. cot²θ = cosec²θ - 1
đˇđˇ āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋđˇ
1. āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ-āĻŦāĻŋāϝāĻŧā§āĻā§āϝ =āĻŦāĻŋāϝāĻŧā§āĻāĻĢāϞāĨ¤
2. 2.āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ=āĻŦāĻŋāϝāĻŧāĻžā§āĻāĻĢ + āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϝ
3. 3.āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϝ=āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ-āĻŦāĻŋāϝāĻŧāĻžā§āĻāĻĢāϞ
4. đˇđˇ āĻā§āĻŖā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋđˇ
5. 1.āĻā§āĻŖāĻĢāϞ =āĻā§āĻŖā§āϝ à āĻā§āĻŖāĻ
6. 2.āĻā§āĻŖāĻ = āĻā§āĻŖāĻĢāϞ Ãˇ āĻā§āĻŖā§āϝ
7. 3.āĻā§āĻŖā§āϝ= āĻā§āĻŖāĻĢāϞ Ãˇ āĻā§āĻŖāĻ
8. đˇđˇ āĻāĻžāĻā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋđˇ
9. āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āύāĻž āĻšāϞā§āĨ¤
10. 1.āĻāĻžāĻā§āϝ= āĻāĻžāĻāĻ Ã āĻāĻžāĻāĻĢāϞ + āĻāĻžāĻāĻļā§āώāĨ¤
11. 2.āĻāĻžāĻā§āϝ= (āĻāĻžāĻā§āϝâ āĻāĻžāĻāĻļā§āώ) Ãˇ āĻāĻžāĻāĻĢāϞāĨ¤
12. 3.āĻāĻžāĻāĻĢāϞ = (āĻāĻžāĻā§āϝ â āĻāĻžāĻāĻļā§āώ)Ãˇ āĻāĻžāĻāĻāĨ¤
13. *āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāϞā§āĨ¤
14. 4.āĻāĻžāĻāĻ= āĻāĻžāĻā§āĻ¯Ãˇ āĻāĻžāĻāĻĢāϞāĨ¤
15. 5.āĻāĻžāĻāĻĢāϞ = āĻāĻžāĻā§āϝ Ãˇ āĻāĻžāĻāĻāĨ¤
16. 6.āĻāĻžāĻā§āϝ = āĻāĻžāĻāĻ Ã āĻāĻžāĻāĻĢāϞāĨ¤
17. đˇđˇāĻāĻā§āύāĻžāĻāĻļā§āϰ āϞ.āϏāĻž.āĻā§ āĻ āĻ.āϏāĻž.āĻā§ āϏā§āϤā§āϰāĻžāĻŦāϞ⧠đˇ
18. 1.āĻāĻā§āύāĻžāĻāĻļā§āϰ āĻ.āϏāĻž.āĻā§ = āϞāĻŦāĻā§āϞāĻžā§āϰ āĻ.āϏāĻž.āĻā§ / āĻšāϰāĻā§āϞāĻžā§āϰ āϞ.āϏāĻž.āĻā§
19. 2.āĻāĻā§āύāĻžāĻāĻļā§āϰ āϞ.āϏāĻž.āĻā§ =āϞāĻŦāĻā§āϞāĻžā§āϰ āϞ.āϏāĻž.āĻā§ /āĻšāϰāĻā§āϞāĻžāϰ āĻ.āϏāĻž.āĻā§
20. 3.āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āĻā§āĻŖāĻĢāϞ = āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āϞ.āϏāĻž.āĻā§ Ã āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āĻ.āϏāĻž.āĻā§.
21. đˇāĻāĻĄāĻŧ āύāĻŋāϰā§āĻŖāϝāĻŧ đˇ
22. 1.āĻāĻĄāĻŧ = āϰāĻžāĻļāĻŋ āϏāĻŽāώā§āĻāĻŋ /āϰāĻžāĻļāĻŋ āϏāĻāĻā§āϝāĻž
23. 2.āϰāĻžāĻļāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ = āĻāĻĄāĻŧ ÃāϰāĻžāĻļāĻŋāϰ āϏāĻāĻā§āϝāĻž
24. 3.āϰāĻžāĻļāĻŋāϰ āϏāĻāĻā§āϝāĻž = āϰāĻžāĻļāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ Ãˇ āĻāĻĄāĻŧ
25. 4.āĻāϝāĻŧā§āϰ āĻāĻĄāĻŧ = āĻŽāĻžā§āĻ āĻāϝāĻŧā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ / āĻŽāĻžā§āĻ āϞāĻžā§āĻā§āϰ āϏāĻāĻā§āϝāĻž
26. 5.āϏāĻāĻā§āϝāĻžāϰ āĻāĻĄāĻŧ = āϏāĻāĻā§āϝāĻžāĻā§āϞāĻžā§āϰ āϝāĻžā§āĻāĻĢāϞ /āϏāĻāĻā§āϝāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āĻŦāĻž āϏāĻāĻā§āϝāĻž
27. 6.āĻā§āϰāĻŽāĻŋāĻ āϧāĻžāϰāĻžāϰ āĻāĻĄāĻŧ =āĻļā§āώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2
28. đˇđˇāϏā§āĻĻāĻāώāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āύāĻŋāϰā§āύāϝāĻŧā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§đˇ
29. 1. āϏā§āĻĻ = (āϏā§āĻĻā§āϰ āĻšāĻžāϰÃāĻāϏāϞÃāϏāĻŽāϝāĻŧ) Ãˇā§§ā§Ļā§Ļ
30. 2. āϏāĻŽāϝāĻŧ = (100à āϏā§āĻĻ)Ãˇ (āĻāϏāϞÃāϏā§āĻĻā§āϰ āĻšāĻžāϰ)
31. 3. āϏā§āĻĻā§āϰ āĻšāĻžāϰ = (100ÃāϏā§āĻĻ)Ãˇ(āĻāϏāϞÃāϏāĻŽāϝāĻŧ)
32. 4. āĻāϏāϞ = (100ÃāϏā§āĻĻ)Ãˇ(āϏāĻŽāϝāĻŧÃāϏā§āĻĻā§āϰ āĻšāĻžāϰ)
33. 5. āĻāϏāϞ = {100Ã(āϏā§āĻĻ-āĻŽā§āϞ)}Ãˇ(100+āϏā§āĻĻā§āϰ āĻšāĻžāϰÃāϏāĻŽāϝāĻŧ )
34. 6. āϏā§āĻĻāĻžāϏāϞ = āĻāϏāϞ + āϏā§āĻĻ
35. 7. āϏā§āĻĻāĻžāϏāϞ = āĻāϏāϞ Ã(1+ āϏā§āĻĻā§āϰ āĻšāĻžāϰ)à āϏāĻŽāϝāĻŧ |[āĻāĻā§āϰāĻŦā§āĻĻā§āϧāĻŋ āϏā§āĻĻā§āϰ āĻā§āώā§āϤā§āϰā§]āĨ¤
36. đˇđˇāϞāĻžāĻ-āĻā§āώāϤāĻŋāϰ āĻāĻŦāĻ āĻā§āϰāϝāĻŧ-āĻŦāĻŋāĻā§āϰāϝāĻŧā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§đˇ
37. 1. āϞāĻžāĻ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ
38. 2.āĻā§āώāϤāĻŋ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ
39. 3.āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āϞāĻžāĻ
40. āĻ
āĻĨāĻŦāĻž
41. āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ + āĻā§āώāϤāĻŋ
42. 4.āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ + āϞāĻžāĻ
43. āĻ
āĻĨāĻŦāĻž
44. āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻā§āώāϤāĻŋ
45. đˇđˇ1-100 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāĻŽāύ⧠āϰāĻžāĻāĻžāϰ āϏāĻšāĻ āĻāĻĒāĻžāϝāĻŧāĻđˇ
46. āĻļāϰā§āĻāĻāĻžāĻ :- 44 -22 -322-321
47. â
1āĻĨā§āĻā§100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=25āĻāĻŋ
48. â
1āĻĨā§āĻā§10āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=4āĻāĻŋ 2,3,5,7
49. â
11āĻĨā§āĻā§20āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=4āĻāĻŋ 11,13,17,19
50. â
21āĻĨā§āĻā§30āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 23,29
51. â
31āĻĨā§āĻā§40āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 31,37
52. â
41āĻĨā§āĻā§50āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=3āĻāĻŋ 41,43,47
53. â
51āĻĨā§āĻā§ 60āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 53,59
54. â
61āĻĨā§āĻā§70āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 61,67
55. â
71āĻĨā§āĻā§80 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=3āĻāĻŋ 71,73,79
56. â
81āĻĨā§āĻā§ 90āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 83,89
57. â
91āĻĨā§āĻā§100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=1āĻāĻŋ 97
58. đˇ1-100 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž 25 āĻāĻŋāĻ
59. 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
60. đˇ1-100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ
61. 1060āĨ¤
62. đˇ1.āĻā§āύ āĻāĻŋāĻā§āϰ
63. āĻāϤāĻŋāĻŦā§āĻ= āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦ/āϏāĻŽāϝāĻŧ
64. 2.āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦ = āĻāϤāĻŋāĻŦā§āĻÃāϏāĻŽāϝāĻŧ
65. 3.āϏāĻŽāϝāĻŧ= āĻŽā§āĻ āĻĻā§āϰāϤā§āĻŦ/āĻŦā§āĻ
66. 4.āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻāĻžāϰā§āϝāĻāϰ⧠āĻāϤāĻŋāĻŦā§āĻ = āύā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻāϤāĻŋāĻŦā§āĻ + āϏā§āϰā§āϤā§āϰ āĻāϤāĻŋāĻŦā§āĻāĨ¤
67. 5.āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻāĻžāϰā§āϝāĻāϰ⧠āĻāϤāĻŋāĻŦā§āĻ = āύā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻāϤāĻŋāĻŦā§āĻ - āϏā§āϰā§āϤā§āϰ āĻāϤāĻŋāĻŦā§āĻ
68. đˇāϏāϰāϞ āϏā§āĻĻđˇ
69. āϝāĻĻāĻŋ āĻāϏāϞ=P, āϏāĻŽāϝāĻŧ=T, āϏā§āĻĻā§āϰ āĻšāĻžāϰ=R, āϏā§āĻĻ-āĻāϏāϞ=A āĻšāϝāĻŧ, āϤāĻžāĻšāϞā§
70. 1.āϏā§āĻĻā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ= PRT/100
71. 2.āĻāϏāϞ= 100ÃāϏā§āĻĻ-āĻāϏāϞ(A)/100+TR
72. đˇđˇāύā§āĻāĻžāϰ āĻāϤāĻŋ āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 10 āĻāĻŋ.āĻŽāĻŋ. āĻāĻŦāĻ āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠2 āĻāĻŋ.āĻŽāĻŋ.āĨ¤ āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ āĻāϤ?
73. â
āĻā§āĻāύāĻŋāĻ-
74. āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ = (āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ - āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ) /2
75. = (10 - 2)/2=
76. = 4 āĻāĻŋ.āĻŽāĻŋ.
77. đˇāĻāĻāĻāĻŋ āύā§āĻāĻž āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 8 āĻāĻŋ.āĻŽāĻŋ.āĻāĻŦāĻ āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 4 āĻāĻŋ.āĻŽāĻŋ.
78. āϝāĻžāϝāĻŧāĨ¤ āύā§āĻāĻžāϰ āĻŦā§āĻ āĻāϤ?
79. â
āĻā§āĻāύāĻŋāĻ-
80. āύā§āĻāĻžāϰ āĻŦā§āĻ = (āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ+āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ)/2
81. = (8 + 4)/2
82. =6 āĻāĻŋ.āĻŽāĻŋ.
83. đˇāύā§āĻāĻž āĻ āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ āĻāύā§āĻāĻžāϝāĻŧ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 10 āĻāĻŋ.āĻŽāĻŋ. āĻ 5 āĻāĻŋ.āĻŽāĻŋ.āĨ¤ āύāĻĻā§āĻĒāĻĨā§ 45 āĻāĻŋ.āĻŽāĻŋ. āĻĒāĻĨ āĻāĻāĻŦāĻžāϰ āĻāĻŋāϝāĻŧā§ āĻĢāĻŋāϰ⧠āĻāϏāϤ⧠āĻāϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻŦā§?
84. āĻā§āĻāύāĻŋāĻ-
85. â
āĻŽāĻžā§āĻ āϏāĻŽāϝāĻŧ = [(āĻŽāĻžā§āĻ āĻĻā§āϰāϤā§āĻŦ/ āĻ
āύā§āĻā§āϞ⧠āĻŦā§āĻ) + (āĻŽāĻžā§āĻ āĻĻā§āϰāϤā§āĻŦ/āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āĻŦā§āĻ)]
86. āĻāϤā§āϤāϰ:āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰāĻŦā§āĻ = (10+5) = 15 āĻāĻŋ.āĻŽāĻŋ.
87. āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ = (10-5) = 5āĻāĻŋ.āĻŽāĻŋ.
88. [(45/15) +(45/5)]
89. = 3+9
90. =12 āĻāύā§āĻāĻž
91. đˇâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ-
92. (āϝāĻāύ āϏāĻāĻā§āϝāĻžāĻāĻŋ1 āĻĨā§āĻā§ āĻļā§āϰā§)1+2+3+4+......+n āĻšāϞ⧠āĻāϰā§āĻĒ āϧāĻžāϰāĻžāϰ āϏāĻŽāώā§āĻāĻŋ= [n(n+1)/2]
93. n=āĻļā§āώ āϏāĻāĻā§āϝāĻž āĻŦāĻž āĻĒāĻĻ āϏāĻāĻā§āϝāĻž s=āϝā§āĻāĻĢāϞ
94. đˇ āĻĒā§āϰāĻļā§āύāĻ 1+2+3+....+100 =?
95. đˇ āϏāĻŽāĻžāϧāĻžāύāĻ[n(n+1)/2]
96. = [100(100+1)/2]
97. = 5050
98. đˇâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻŦāϰā§āĻ āϝā§āĻ āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻā§āώā§āϤā§āϰā§,-
99. āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻā§āϰ āĻŦāϰā§āĻā§āϰ āϏāĻŽāώā§āĻāĻŋ
100. S= [n(n+1)2n+1)/6]
101. (āϝāĻāύ 1² + 2²+ 3² + 4²........ +n²)
102. đˇāĻĒā§āϰāĻļā§āύāĻ(1² + 3²+ 5² + ....... +31²) āϏāĻŽāĻžāύ āĻāϤ?
103. đˇāϏāĻŽāĻžāϧāĻžāύāĻ S=[n(n+1)2n+1)/6]
104. = [31(31+1)2Ã31+1)/6]
105. =31
106. đˇâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻāύāϝā§āĻ āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻā§āώā§āϤā§āϰā§-
107. āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻā§āϰ āĻāύā§āϰ āϏāĻŽāώā§āĻāĻŋ S= [n(n+1)/2]2
108. (āϝāĻāύ 1Âŗ+2Âŗ+3Âŗ+.............+nÂŗ)
109. đˇāĻĒā§āϰāĻļā§āύāĻ1Âŗ+2Âŗ+3Âŗ+4Âŗ+âĻâĻâĻâĻ+10Âŗ=?
110. đˇāϏāĻŽāĻžāϧāĻžāύāĻ [n(n+1)/2]2
111. = [10(10+1)/2]2
112. = 3025
113. đˇâ
āĻĒāĻĻ āϏāĻāĻā§āϝāĻž āĻ āĻĒāĻĻ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ āύāĻŋāϰā§āύāϝāĻŧā§āϰ āĻā§āώā§āϤā§āϰā§āĻ
114. āĻĒāĻĻ āϏāĻāĻā§āϝāĻž N= [(āĻļā§āώ āĻĒāĻĻ â āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻā§ āĻŦā§āĻĻā§āϧāĻŋ] +1
115. đˇāĻĒā§āϰāĻļā§āύāĻ5+10+15+âĻâĻâĻâĻ+50=?
116. đˇāϏāĻŽāĻžāϧāĻžāύāĻ āĻĒāĻĻāϏāĻāĻā§āϝāĻž = [(āĻļā§āώ āĻĒāĻĻ â āĻĒā§āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻā§ āĻŦā§āĻĻā§āϧāĻŋ]+1
117. = [(50 â 5)/5] + 1
118. =10
119. āϏā§āϤāϰāĻžāĻ āĻĒāĻĻ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ
120. = [(5 + 50)/2] Ã10
121. = 275
122. đˇâ
n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d
123. āĻāĻāĻžāύā§, n =āĻĒāĻĻāϏāĻāĻā§āϝāĻž, a = 1āĻŽ āĻĒāĻĻ, d= āϏāĻžāϧāĻžāϰāĻŖ āĻ
āύā§āϤāϰ
124. đˇāĻĒā§āϰāĻļā§āύāĻ 5+8+11+14+.......āϧāĻžāϰāĻžāĻāĻŋāϰ āĻā§āύ āĻĒāĻĻ 302?
125. đˇ āϏāĻŽāĻžāϧāĻžāύāĻ āϧāϰāĻŋ, n āϤāĻŽ āĻĒāĻĻ =302
126. āĻŦāĻž, a + (n-1)d=302
127. āĻŦāĻž, 5+(n-1)3 =302
128. āĻŦāĻž, 3n=300
129. āĻŦāĻž, n=100
130. đˇâ
6)āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ-S=M² āĻāĻāĻžāύā§,M=āĻŽāϧā§āϝā§āĻŽāĻž=(1āĻŽ āϏāĻāĻā§āϝāĻž+āĻļā§āώ āϏāĻāĻā§āϝāĻž)/2
131. đˇāĻĒā§āϰāĻļā§āύāĻ1+3+5+.......+19=āĻāϤ?
132. đˇ āϏāĻŽāĻžāϧāĻžāύāĻ S=M²
133. ={(1+19)/2}²
134. =(20/2)²
135. =100
136. đˇđˇ āĻŦāϰā§āĻđˇ
137. (1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
138. đˇđˇāύāĻŋāϝāĻŧāĻŽ-āϝāϤāĻā§āϞ⧠1 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠1 āĻĨā§āĻā§ āĻļā§āϰ⧠āĻāϰ⧠āĻĒāϰ āĻĒāϰ āϏā§āĻ āϏāĻāĻā§āϝāĻž āĻĒāϰā§āϝāύā§āϤ āϞāĻŋāĻāϤ⧠āĻšāĻŦā§ āĻāĻŦāĻ āϤāĻžāϰāĻĒāϰ āϏā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻĒāϰ āĻĨā§āĻā§ āĻ
āϧāĻāĻā§āϰāĻŽā§ āĻĒāϰāĻĒāϰ āϏāĻāĻā§āϝāĻžāĻā§āϞ⧠āϞāĻŋāĻā§ 1 āϏāĻāĻā§āϝāĻžāϝāĻŧ āĻļā§āώ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
139. đˇ(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
140. đˇāϝāϤāĻā§āϞāĻŋ 3 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠9 āĻāĻŦāĻ 9 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠3 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 8, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 0 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 8 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 1 āĻŦāϏāĻŦā§āĨ¤
141. đˇ(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
142. đˇāϝāϤāĻā§āϞāĻŋ 6 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠6 āĻāĻŦāĻ 6 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠6 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 5, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 3 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 5 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 4 āĻŦāϏāĻŦā§āĨ¤
143. đˇ(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
144. đˇāϝāϤāĻā§āϞāĻŋ 9 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠1 āĻāĻŦāĻ 1 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠9 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 0, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 8 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 0 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 9 āĻŦāϏāĻŦā§āĨ¤
đˇđˇđˇāĻāύāĻâ Father
1)Numerology (āϏāĻāĻā§āϝāĻžāϤāϤā§āϤā§āĻŦ)- Pythagoras(āĻĒāĻŋāĻĨāĻžāĻā§āϰāĻžāϏ)
2) Geometry(āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ)- Euclid(āĻāĻāĻā§āϞāĻŋāĻĄ)
3) 3) Calculus(āĻā§āϝāĻžāϞāĻā§āϞāĻžāϏ)- Newton(āύāĻŋāĻāĻāύ)
4) 4) Matrix(āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏ) - Arthur Cayley(āĻ
āϰā§āĻĨāĻžāϰ āĻā§āϝāĻžāϞā§)
5) 5)Trigonometry(āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋ)Hipparchus(āĻšāĻŋāĻĒā§āĻĒāĻžāϰāĻāĻžāϏ)
6) 6) Arithmetic(āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤ) Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāĻā§āĻĒā§āϤ)
7) 7) Algebra(āĻŦā§āĻāĻāĻŖāĻŋāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽāĻžā§āĻšāĻžāĻŽā§āĻŽāĻĻ āĻŽā§āϏāĻž āĻāϞ āĻāĻžāϰāĻŋāĻāĻŽā§)
8) đ Logarithm(āϞāĻāĻžāϰāĻŋāĻĻāĻŽ)- John Napier(āĻāύ āύā§āĻĒāĻŋāϝāĻŧāĻžāϰ)
9) 9) Set theory(āϏā§āĻ āϤāϤā§āϤā§āĻŦ)- George Cantor(āĻāϰā§āĻ āĻā§āϝāĻžāύā§āĻāϰ)
10) 10) Zero(āĻļā§āύā§āϝ)- Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāĻā§āĻĒā§āϤ)
11) đˇđˇđˇāĻ
āĻā§āĻā§āϰ āĻāĻāϰā§āĻāĻŋ āĻļāĻŦā§āĻĻ
12) āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤ āĻ āĻĒāϰāĻŋāĻŽāĻŋāϤāĻŋ
13) āĻ
āĻā§āĻ-Digit, āĻ
āύā§āĻĒāĻžāϤ-Ratio, āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžâPrime number, āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ-Perfect square,āĻā§āĻĒāĻžāĻĻāĻ-Factor,āĻā§āϰāĻŽāĻŋāĻ āϏāĻŽāĻžāύā§āĻĒāĻžāϤā§âContinued proportion, āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ -Cost price, āĻā§āώāϤāĻŋ-Loss, āĻāĻĄāĻŧ-Average, āĻāϤāĻŋāĻŦā§āĻ-Velocity, āĻā§āĻŖāĻĢāϞ-Product, āĻ,āϏāĻž,āĻā§-Highest Common Factor, āĻāĻžāϤ-Power, āĻāύāĻŽā§āϞâCube root, āĻāύāĻ-Cube, āĻāύāĻĢāϞ-Volume, āĻĒā§āϰā§āύāϏāĻāĻā§āϝāĻž-Integer, āĻāĻžāĻĒ-Arc, āĻā§āĻ-Cylinder, āĻā§āϝāĻž-Chord, āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž-Even number, āϧā§āϰā§āĻŦāĻ-Constant, āĻĒāϰāĻŋāϏā§āĻŽāĻž-Perimeter, āĻŦāĻžāϏā§āϤāĻŦ-Real, āĻŦāϰā§āĻāĻŽā§āϞ-Square root, āĻŦā§āϝāϏā§āϤ āĻ
āύā§āĻĒāĻžāϤâInverse ratio, āĻŦāĻŋāĻā§āĻĄāĻŧāϏāĻāĻā§āϝāĻžâOdd number, āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ -Selling price, āĻŦā§āĻāĻāĻŖāĻŋāϤâAlgebra, āĻŽā§āϞāĻĻ Rational, āĻŽāϧā§āϝ āϏāĻŽāĻžāύā§āĻĒāĻžāϤ⧠-Mean proportional, āϝāĻžā§āĻāĻĢāϞ=Sum
14) āϞ,āϏāĻž,āĻā§-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻāϰāĻž-Percentage, āϏāĻŽāĻžāύā§āĻĒāĻžāϤ-Proportion, āϏāĻŽāĻžāύā§āĻĒāĻžāϤā§-Proportional, āϏā§āĻĻ-Interest, āĻšāϰ-Denominator,
15) đˇāĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ
16) āĻ
āϤāĻŋāĻā§āĻâHypotenuse, āĻ
āύā§āϤāĻāĻā§āĻŖ-Internal angle, āĻ
āϰā§āϧāĻŦā§āϤā§āϤ-Semi-circle, āĻ
āύā§āϤ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ-In-radius, āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ-Rectangle, āĻāĻā§āĻāϤāĻž-Height, āĻāϰā§āĻŖâDiagonal, āĻā§āĻŖ-Angle, āĻā§āύā§āĻĻā§āϰ-Centre, āĻāĻžā§āϞāĻ-Sphere, āĻāϤā§āϰā§āĻā§āĻ-Quadrilateral, āĻā§āĻ-Cylinder,āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ-Geometry,āĻĻā§āϰā§āĻā§āϝ-Length, āĻĒāĻā§āĻāĻā§āĻ -Pentagon, āĻĒā§āϰāϏā§āĻĨ-Breadth
17) āĻĒā§āϰāĻāĻā§āύ-Complementary angles, āĻŦāĻžāĻšā§-Side, āĻŦā§āϤā§āϤ-Circle, āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ-Radius, āĻŦā§āϝāĻžāϏ-Diameter, āĻŦāĻšā§āĻā§āĻ-Polygon, āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰâSquare, āĻŦāĻšāĻŋ:āϏā§āĻĨ External, āĻļāĻā§āĻā§-Cone, āϏāĻŽāĻā§āĻŖ-Right angle, āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ-Equilateral triangle, āĻ
āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻâScalene triangle, āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ-isosceles Triangle,āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ Right angled triangle, āϏā§āĻā§āώā§āĻŽāĻā§āĻŖā§-Acute angled triangle, āϏā§āĻĨā§āϞāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ Obtuse angled triangle, āϏāĻŽāĻžāύā§āϤāϰāĻžāϞâParallel, āϏāϰāϞāϰā§āĻāĻžâStraight line, āϏāĻŽā§āĻĒā§āϰāĻ āĻā§āĻŖâSupplementary angles, āϏāĻĻā§āĻļāĻā§āĻŖā§-Equiangular
18) đˇāϰā§āĻŽāĻžāύ āϏāĻāĻā§āϝāĻžâ Roman numerals )
19) 1:I
20) 2: II
21) 3: III
22) 4: IV
23) 5: V
24) 6: VI
25) 7: VII
26) 8: VIII
27) 9: IX
28) 10: X
29) 11: XI
30) 12: XII
31) 13: XIII
32) 14: XIV
33) 15: XV
34) 16: XVI
35) 17: XVII
36) 18: XVIII
37) 19: XIX
38) 20: XX,30: ###,40: XL,50: L,60: LX,70: LXX,80: L###
39) ,90: XC,100: C,200: CC,300: CCC,400: CD,500: D,600: DC
40) , 700: DCC,800: DCCC,900: CM,1000:M
41) đˇđˇ1. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
42) āϏāĻāĻā§āϝāĻžāĨ¤
43) āϝā§āĻŽāύāĻ 2 + 6 = 8.
44) đˇ2. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
45) āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
46) āϝā§āĻŽāύāĻ 6 + 7 = 13.
47) đˇ3. āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
48) āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
49) āϝā§āĻŽāύāĻ 3 + 5 = 8.
50) đˇ4. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
51) āϏāĻāĻā§āϝāĻžāĨ¤
52) āϝā§āĻŽāύāĻ 6 à 8 = 48.
53) đˇ5.āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
54) āϏāĻāĻā§āϝāĻžāĨ¤
55) āϝā§āĻŽāύāĻ 6 à 7 = 42
56) đˇ6.āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
57) āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
58) āϝā§āĻŽāύāĻ 3 à 9 = 27
59) đˇđˇāĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ!
60) đˇ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 5 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
61) 1.đˇ 13/5= 2.6 (āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āĻŽāĻžāϤā§āϰ ā§Š āϏā§āĻā§āύā§āĻĄā§ āĻāĻāĻŋ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžāϝāĻŧ)
62) đˇâ
āĻā§āĻāύāĻŋāĻāĻ
63) 5 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 2 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 1 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ āĻāĻžāĻ āĻļā§āώ!!! 13*2=26, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 1 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠2.6 āĨ¤
64) 2.đˇ 213/5=42.6 (213*2=426)
65) 0.03/5= 0.006 (0.03*2=0.06 āϝāĻžāϰ āĻāĻāĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻžāϞ⧠āĻšāϝāĻŧ 0.006) 333,333,333/5= 66,666,666.6 (āĻāĻ āĻā§āϞāĻž āĻāϰāϤ⧠āĻāĻŦāĻžāϰ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āϞāĻžāĻā§ āύāĻž āĻāĻŋ!)
66) 3.đˇ 12,121,212/5= 2,424,242.4
67) āĻāĻŦāĻžāϰ āύāĻŋāĻā§ āĻāĻā§āĻā§āĻŽāϤ 5 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰ⧠āĻĻā§āĻā§āύ
68) đˇđˇ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 25 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
69) 1.đˇ 13/25=0.52 (āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āĻāĻāĻŋāĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžāϝāĻŧ)
70) đˇâ
āĻā§āĻāύāĻŋāĻāĻ
71) 25 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 4 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 2 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ 13*4=52, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 2 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠0.52 āĨ¤
72) 02.đˇ 210/25 = 8.40
73) 03.đˇ 0.03/25 = 0.0012
74) 04.đˇ 222,222/25 = 8,888.88
75) 05đˇ. 13,121,312/25 = 524,852.48
76) đˇđˇ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 125 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
77) 01.đˇ 7/125 = 0.056
78) đˇâ
āĻā§āĻāύāĻŋāĻāĻ
79) 125 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 8 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 3 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ āĻāĻžāĻ āĻļā§āώ! 7*8=56, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 3 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠0.056 āĨ¤
80) 02.đˇ 111/125 = 0.888
81) 03.đˇ 600/125 = 4.800
82) đˇđˇđˇāĻāϏā§āύ āϏāĻšāĻā§ āĻāϰāĻŋ
83) āĻāĻĒāĻŋāĻāĻ 10 āϏā§āĻā§āύā§āĻĄā§ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧāĨ¤
84) āĻŦāĻŋāĻāĻĻā§āϰāĻ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§āϞā§āϰ āĻŦāϰā§āĻāĻŽā§āϞ 1 āĻĨā§āĻā§ 99 āĻāϰ āĻŽāϧā§āϝ⧠āĻāĻ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧠āϤāĻžāĻĻā§āϰ āĻŦā§āϰ āĻāϰāĻž āϝāĻžāĻŦā§ āĻā§āĻŦ āϏāĻšāĻā§āĻāĨ¤ āĻĒā§āϰāĻļā§āύ⧠āĻ
āĻŦāĻļā§āϝāĻ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻĨāĻžāĻāĻž āϞāĻžāĻāĻŦā§āĨ¤ āĻ
āϰā§āĻĨāĻžā§ āĻāϤā§āϤāϰ āϝāĻĻāĻŋ āĻĻāĻļāĻŽāĻŋāĻ āĻāĻā§āύāĻžāĻāĻļ āĻāϏ⧠āϤāĻŦā§ āĻāĻ āĻĒāĻĻā§āĻŦāϤāĻŋ āĻāĻžāĻā§ āĻāϏāĻŦā§āύāĻžāĨ¤
85) āĻ
āĻŦāĻļā§āϝāĻ āĻŽāύā§āϝā§āĻ āĻĻāĻŋāϝāĻŧā§ āĻĒāĻĄāĻŧāϤ⧠āĻšāĻŦā§ āĻāĻŦāĻ āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āύāϝāĻŧāϤ āĻā§āϞ⧠āϝāĻžāĻŦā§āύāĨ¤
86) āϤāĻŦā§ āĻāϏā§āύ āĻļā§āϰ⧠āĻāϰāĻž āϝāĻžāĻāĨ¤ āĻļā§āϰā§āϤ⧠1 āĻĨā§āĻā§ 9 āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻ āĻŽā§āĻāϏā§āĻĨ āĻāϰ⧠āύāĻŋāĻāĨ¤ āĻāĻļāĻž āĻāϰāĻŋ āĻāĻā§āϞ⧠āϏāĻŦāĻžāĻ āĻāĻžāύā§āύāĨ¤ āϏā§āĻŦāĻŋāϧāĻžāϰ āĻāύā§āϝ⧠āĻāĻŽāĻŋ āύāĻŋāĻā§ āϞāĻŋāĻā§ āĻĻāĻŋāĻā§āĻāĻŋ-
87) 1 square = 1, 2 square = 4
88) 3 square = 9, 4 square = 16
89) 5 square = 25, 6 square = 36
90) 7 square = 49, 8 square = 64
91) 9 square = 81
92) āĻāĻāĻžāύ⧠āĻĒā§āϰāϤā§āϝā§āĻāĻāĻž āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻĻāĻŋāĻā§ āĻā§āϝāĻŧāĻžāϞ āĻāϰāϞ⧠āĻĻā§āĻāĻŦā§āύ, āϏāĻŦāĻžāϰ āĻļā§āώā§āϰ āĻ
āĻāĻāĻāĻŋāϰ āĻā§āώā§āϤā§āϰ⧠-
93) â
1 āĻāϰ 9 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§ (1, 81)
94) â
2 āĻāϰ 8 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§(4, 64)
95) â
3 āĻāϰ 7 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§ (9, 49);
96) â
4 āĻāϰ 6 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§(16, 36);
97) āĻāĻŦāĻ 5 āĻāĻāĻž frown emoticon
98) āĻāĻĻā§āĻĻā§āϰ āĻĒāϰā§āϝāύā§āϤ āĻŦā§āĻāϤ⧠āϝāĻĻāĻŋ āĻā§āύ āϏāĻŽāϏā§āϝāĻž āĻĨāĻžāĻā§ āϤāĻŦā§ āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§ āύāĻŋāύāĨ¤
99) đˇāĻāĻĻāĻžāĻšāϰāĻŖ:- 576 āĻāϰ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āύāĨ¤
100) đˇāĻĒā§āϰāĻĨāĻŽ āϧāĻžāĻĒāĻ āϝ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāϤ⧠āĻšāĻŦā§ āϤāĻžāϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻāĻāĻŋ āĻĻā§āĻāĻŦā§āύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āϤāĻž āĻšāĻā§āĻā§ '6' āĨ¤
101) đˇ āĻĻā§āĻŦāĻŋāϤā§āϝāĻŧ āϧāĻžāĻĒāĻ āĻāĻĒāϰā§āϰ āϞāĻŋāϏā§āĻ āĻĨā§āĻā§ āϏ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ 6 āϤāĻžāĻĻā§āϰ āύāĻŋāĻŦā§āύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠4 āĻāĻŦāĻ 6 āĨ¤ āĻāĻŦāĻžāϰ āĻŦāϞāĻŋ, āĻā§āϝāĻŧāĻžāϞ āĻāϰā§āύ- 4 āĻāĻŦāĻ 6 āĻāϰ āĻŦāϰā§āĻ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 16 āĻāĻŦāĻ 36; āϝāĻžāĻĻā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻāĻŋāύāĻž '6' āĨ¤ āĻŦā§āĻāϤ⧠āĻĒā§āϰā§āĻā§āύ? āύāĻž āĻŦā§āĻāϞ⧠āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§ āĻĻā§āĻā§āύāĨ¤
102) đˇ āϤā§āϤā§āϝāĻŧ āϧāĻžāĻĒāĻ 4 / 6 āϞāĻŋāĻā§ āϰāĻžāĻā§āύ āĻāĻžāϤāĻžāϝāĻŧāĨ¤ (āĻāĻŽāϰāĻž āĻāϤā§āϤāϰā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§ āĻā§āĻāĻŋ, āϝāĻž āĻšāĻā§āĻā§ 4 āĻ
āĻĨāĻŦāĻž 6; āĻāĻŋāύā§āϤ⧠āĻā§āύāĻāĻž? āĻāϰ āĻāϤā§āϤāϰ āĻĒāĻžāĻŦā§āύ āĻ
āώā§āĻāĻŽ āϧāĻžāĻĒā§, āĻĒāĻĄāĻŧāϤ⧠āĻĨāĻžāĻā§āύ ...)
103) đˇ āĻāϤā§āϰā§āĻĨ āϧāĻžāĻĒāĻ āĻĒā§āϰāĻļā§āύā§āϰ āĻāĻāĻ āĻāϰ āĻĻāĻļāĻā§āϰ āĻ
āĻāĻ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧā§ āĻŦāĻžāĻāĻŋ āĻ
āĻāĻā§āϰ āĻĻāĻŋāĻā§ āϤāĻžāĻāĻžāύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āĻāĻāĻŋ āĻšāĻā§āĻā§ 5 āĨ¤
104) đˇāĻĒāĻā§āĻāĻŽ āϧāĻžāĻĒāĻ āĻāĻĒāϰā§āϰ āϞāĻŋāϏā§āĻ āĻĨā§āĻā§ 5 āĻāϰ āĻāĻžāĻāĻžāĻāĻžāĻāĻŋ āϝ⧠āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāĻā§ āϤāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞāĻāĻž āύāĻŋāύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠4, āϝāĻž āĻāĻŋāύāĻž 2 āĻāϰ āĻŦāϰā§āĻāĨ¤ (āĻāĻŽāϰāĻž āĻāϤā§āϤāϰā§āϰ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§ āĻā§āĻāĻŋ, āϝāĻž āĻšāĻā§āĻā§ 2 )
105) đˇāώāώā§āĻ āϧāĻžāĻĒāĻ 2 āĻāϰ āϏāĻžāĻĨā§ āϤāĻžāϰ āĻĒāϰā§āϰ āϏāĻāĻā§āϝāĻž āĻā§āύ āĻāϰā§āύāĨ¤ āĻ
āϰā§āĻĨāĻžā§ 2*3=6
106) đˇāϏāĻĒā§āϤāĻŽ āϧāĻžāĻĒāĻ āĻāϤā§āϰā§āĻĨ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāĻāĻž (5) āώāώā§āĻ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāϰ (6) āĻā§āϝāĻŧā§ āĻā§āĻ āύāĻžāĻāĻŋ āĻŦāĻĄāĻŧ āĻĻā§āĻā§āύāĨ¤ āĻā§āĻ āĻšāϞ⧠āϤā§āϤā§āϝāĻŧ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻāĻāĻŋ āύā§āĻŦ, āĻŦāĻĄāĻŧ āĻšāϞ⧠āĻŦāĻĄāĻŧāĻāĻŋāĨ¤ (āĻŦā§āĻāϤ⧠āĻĒā§āϰā§āĻā§āύ? āύāϝāĻŧāϤ āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§āύ)
107) đˇāĻ
āώā§āĻāĻŽ āϧāĻžāĻĒāĻ āĻāĻŽāĻžāĻĻā§āϰ āĻāĻĻāĻžāĻšāϰāĻŖā§āϰ āĻā§āώā§āϤā§āϰ⧠5 āĻšāĻā§āĻā§ 6 āĻāϰ āĻā§āĻ, āϤāĻžāĻ āĻāĻŽāϰāĻž 4 / 6 āĻŽāϧā§āϝ⧠āĻā§āĻ āϏāĻāĻā§āϝāĻž āĻ
āϰā§āĻĨāĻžā§ 4 āύā§āĻŦāĨ¤
108) đˇāύāĻŦāĻŽ āϧāĻžāĻĒāĻ āĻŽāύ⧠āĻāĻā§, āĻĒāĻā§āĻāĻŽ āϧāĻžāĻĒā§ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§āĻāĻŋāϞāĻžāĻŽ 2 āĻāĻŦāĻžāϰ āĻĒā§āϝāĻŧā§āĻāĻŋ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ 4 āĨ¤ āϤāĻžāĻ āĻāϤā§āϤāϰ āĻšāĻŦā§ 24
109) āĻāĻ āĻŋāύ āĻŽāύ⧠āĻšāĻā§āĻā§? āĻāĻāĻĻāĻŽāĻ āύāĻž, āĻāϝāĻŧā§āĻāĻāĻž āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰ⧠āĻĻā§āĻā§āύāĨ¤ āĻāĻŽāĻžāϰ āĻŽāϤ⧠āĻā§āĻŦ āĻŦā§āĻļāĻŋ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻžāϰ āĻāĻĨāĻž āύāĻžāĨ¤
110) đˇāĻāĻĻāĻžāĻšāϰāĻŖ:- 4225 āĻāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻŦā§āϰ āĻāϰā§āύāĨ¤
111) āĻŽāύ⧠āĻāĻā§ 5 āϝ⧠āĻāĻāĻž āĻāĻŋāϞ? āϏ⧠āĻāĻāĻž āĻĨāĻžāĻāĻžāϝāĻŧ āĻāĻĒāύāĻžāϰ āĻāĻžāĻ āĻāĻŋāύā§āϤ⧠āĻ
āύā§āĻ āϏā§āĻāĻž āĻšāϝāĻŧā§ āĻā§āĻā§āĨ¤ āĻĻā§āĻā§āύ āĻā§āύ⧠āĻĒā§āϰāĻļā§āύā§āϰ āĻļā§āώ āĻ
āĻāĻ 5 āĻšāĻāϝāĻŧāĻžāϝāĻŧ āĻāϤā§āϤāϰā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻšāĻŦā§ āĻ
āĻŦāĻļā§āϝāĻ 5 āĨ¤
112) - āĻĒā§āϰāĻļā§āύā§āϰ āĻāĻāĻ āĻ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠āĻŦāĻžāĻāĻŋ āĻĨāĻžāĻā§ 42 āĨ¤
113) - 42 āĻāϰ āϏāĻŦāĻā§āϝāĻŧā§ āĻāĻžāĻā§āϰ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻšāĻā§āĻā§ 36, āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻšāĻā§āĻā§ 6 āĨ¤ āϤāĻžāĻ āĻāϤā§āϤāϰ āĻšāĻā§āĻā§ 65.