Plantillas Ortopédicas

Plantillas Ortopédicas Elaboración de órtesis plantares de acuerdo a las necesidades y patologías del paciente. Estudio de pisada, postura y marcha.

06/01/2026
05/01/2026

Big toe extension (50–90°) is non-negotiable for efficient gait propulsion and foot rigidity via the windlass mechanism.



Windlass mechanism in action
During terminal stance, extensor hallucis longus (EHL) + hallux dorsiflexion tensions the plantar fascia from calcaneus → proximal phalanx. This winds the fascia tight, elevating the medial longitudinal arch 5–10mm and transforming the flexible foot into a rigid lever for toe-off power.


Stiff big toe = biomechanical chaos
Restricted extension (

05/01/2026

“Arches are strong by design.”

Here’s the biomechanics behind it 👇

1️⃣ Foot as a Tripod System

The circles under the foot represent the three load-bearing points:

Heel

1st metatarsal head

5th metatarsal head

👉 These three points create a stable tripod, just like a camera stand.

Biomechanics

Load is evenly distributed

The medial longitudinal arch stays elastic, not collapsed

Shock absorption improves during walking and running

If one point fails → the arch collapses → stress increases up the chain.

2️⃣ Foot Arch = Spring + Lever

The foot arch behaves like a spring:

Compresses during loading (pronation)

Recoils during push-off (supination)

Key structures involved:

Plantar fascia

Intrinsic foot muscles

Achilles tendon

👉 This elastic recoil improves energy efficiency and reduces fatigue.

3️⃣ Connection to Whole-Body Posture

The upright posture diagram shows alignment from:
Foot → Ankle → Knee → Hip → Spine → Head

Biomechanical chain reaction

Stable foot → stable tibia

Stable tibia → better hip control

Better hip control → neutral spine

Neutral spine → reduced neck & back stress

📌 Foot instability often shows up as:

Knee valgus

Anterior pelvic tilt

Forward head posture

4️⃣ Tripod Analogy (Engineering Principle)

The tripod image explains why arches work:

Three contact points = maximum stability

Forces are shared, not concentrated

Just like a tripod:

Remove one leg → instability

Overload one leg → failure

Same with feet.

5️⃣ Tree & Roots Analogy (Fascial Concept)

The tree represents:

Roots = feet

Trunk = spine

Branches = limbs

Biomechanics

Strong roots → stable trunk

Weak roots → compensations everywhere else

This aligns with fascial continuity:

Plantar fascia connects to Achilles

Achilles → calf → hamstrings → pelvis → spine

05/01/2026

⚡ ¿Dolor que baja por la pierna, hormigueo o ardor?
Puede tratarse de inflamación del nervio ciático.
En Nueva Salud evaluamos la causa y tratamos el problema con Traumatología y Fisioterapia especializada, enfocadas en aliviar el dolor y recuperar tu movilidad.
📍 Chillogallo – Sur de Quito
📲 WhatsApp: 0962998231
🩺 Agenda tu evaluación a tiempo. Tu cuerpo no espera.








05/01/2026

🚨 Why Your "Perfect Posture" is CRUSHING Your Plantar Fasciitis (And Calves Are NOT the Problem!)


Everyone stretches calves for heel pain. WRONG approach. Forward head/weight shift posture (90% of desk workers) locks calves "long" under constant eccentric stretch → heel fascia overload. Here's the chain:

The Posterior Chain Tensegrity Trap
Gastroc aponeurosis → Achilles → calcaneal periosteum → plantar fascia = ONE continuous tissue. Forward trunk shift demands 5–10° extra ankle dorsiflexion → calves grip 2x bodyweight → heel microtears.

Result: Thickened fascia (4–7mm vs normal 3mm), bone spurs, morning hobble.

Why Stretching Makes It WORSE
Already-stretched calves don't need length—they need LOAD OFF. Stretching adds to eccentric stress while ignoring the real driver: postural collapse.

The Restacking Fix (60% Pain Drop in 2 Weeks)
Before: Ears forward → shoulders rounded → weight on toes → calves screaming.
After: Ears/shoulders/hips stacked → neutral dorsiflexion → 25% less calf strain → ball-of-foot loading.

Protocol:

Mirror check: Side view—your ear over ankle?

Wall angel: Back flat, chin tuck, shoulders down (3x30s)

Glute march: Seated hip flexion → pelvic tuck (2min/hr)

Weight shift drill: Conscious heel-to-toe roll (100 steps)

Paradox: Feels like "more heel weight" but unloads plantar origin 30%. Heel pain drops, squat depth improves, calves relax.

Stop stretching. Start stacking. Your heels will thank you.

05/01/2026

Flat feet (pes planus) create a resting calcaneal eversion → talar internal rotation → tibial/femoral IR cascade, generating medial knee overload during dynamic loading.


Pronation chain reaction
Heel strike: Calcaneus everts 4–8° → talus adducts/IR → tibia IR 5–10° → femur IR + adduction → knee valgus moment (Q-angle ↑15–25°).
Resting state: Rigid flat foot starts with 2–5° calcaneal eversion vs neutral's 0–2°, forcing compensatory tibial IR even standing still.


Medial knee stress mechanics
Thousands of steps/day with starting IR position = 20–40% ↑ medial compartment force + ACL strain during single-leg stance. Squats? Dynamic valgus + patellofemoral shear skyrockets.

Hip/LB cascade
Uncontrolled pronation → contralateral pelvic drop (Trendelenburg) → L4-L5 rotation → QL/glute med compensation → low back referral.

The mobility solution
Foot triplane control (arch doming + big toe extension) reverses the cascade better than orthotics. Train short-foot + glute med activation = neutral chain loading.

Flat feet ≠ doom. Poor foot CORE = medial knee/back pain epidemic. Retrain the foundation!

05/01/2026

🦴 Understand Your Posture – The Biomechanics Explained

This image shows how the body adapts to keep the eyes level with the horizon, even when posture is altered. When one segment shifts, the rest of the body compensates — often leading to pain and overload.

🔹 Head & Neck (Neck Strain)
If posture is asymmetrical or the head drifts forward/sideways, the cervical spine bends to keep vision straight. This increases load on neck extensors and deep cervical muscles → stiffness and headaches.

🔹 Thoracic & Lumbar Spine (Low Back Strain)
To counterbalance the head, the spine curves laterally or rotates. This uneven loading stresses intervertebral discs, facet joints, and paraspinal muscles, commonly causing chronic low-back pain.

🔹 Pelvis & Hip (Hip Joint Stress)
A tilted or rotated pelvis shifts body weight unevenly onto one hip. This increases compressive forces at the hip joint and overloads muscles like gluteus medius and QL, reducing pelvic stability during walking.

🔹 Knee (Knee Joint Stress)
Pelvic and hip asymmetry changes femur alignment, altering knee tracking. The knee absorbs abnormal rotational and shear forces, increasing risk of pain and degenerative changes.

🔹 Foot & Ankle (Soreness & Fatigue)
Compensations travel down to the foot. One side may over-pronate or stay more rigid, leading to excessive stress on plantar structures and early fatigue.

🧠 Key Biomechanical Principle:
The body prioritizes visual alignment first — everything else adapts around it. Poor posture doesn’t stay local; it creates a chain reaction from head to foot.

✅ Correct the source, not just the pain.
Postural alignment, hip stability, spinal control, and foot mechanics must be addressed together.

https://www.facebook.com/share/p/17eDeFmdkN/
05/01/2026

https://www.facebook.com/share/p/17eDeFmdkN/

🦶 Biomechanics Explained: Why Arches Are Strong by Design

This image smartly compares the human foot arch to a bridge arch—and biomechanically, the logic is exactly the same.

🔑 1. The Foot Arch = A Load-Bearing Structure

The foot has three arches:

Medial longitudinal arch (main shock absorber)

Lateral longitudinal arch (stability)

Transverse arch (midfoot integrity)

Together, they allow the foot to support body weight, absorb impact, and adapt to the ground.

Just like a bridge, an arch distributes force sideways, not straight down.

🔄 2. How Forces Are Managed

When you stand or walk:

Body weight loads the arch from above

Ground reaction force pushes up from below

The curved arch shape converts compression into tension along bones, ligaments, and fascia

👉 This reduces stress on any single structure.

🧠 3. Role of the Plantar Fascia (Windlass Mechanism)

The plantar fascia acts like a tension cable under the arch

When toes extend during push-off, the fascia tightens

This raises and stiffens the arch, making the foot an efficient lever

Same principle as tightening cables in a bridge to increase strength.

🦵 4. Muscles Act Like Dynamic Support Beams

Intrinsic foot muscles

Calf muscles (gastrocnemius–soleus)

Tibialis posterior & peroneals

These muscles actively control arch height during walking and running.

➡️ A strong arch is not rigid—it’s adaptive and responsive.

⚠️ 5. When the Design Fails

Problems arise when:

Load exceeds capacity (overuse)

Muscles are weak or delayed

Fascia is overstressed

This leads to:

Flat feet or collapsing arches

Plantar fasciitis

Midfoot pain

✅ Key Takeaway

Arches are strong because of their shape AND their dynamic support system.
Just like bridges, feet are designed to:

Distribute forces

Store and release energy

Stay strong under repeated load

📌 Don’t aim for rigid arches—aim for resilient, well-controlled ones.

04/01/2026

El Tríceps Sural, motor y corazón de nuestra marcha

El tríceps sural no es simplemente "la pantorrilla"; es un prodigio de la ingeniería biológica que combina potencia mecánica con una función vital para la circulación. Este complejo está formado por tres cabezas musculares: los dos gastrocnemios (conocidos popularmente como gemelos) y el sóleo, que yace profundo a ellos. Juntos, convergen en el tendón de Aquiles, la estructura tendinosa más gruesa y resistente del cuerpo humano.

Desde una perspectiva funcional, debemos entender su dualidad. Los gastrocnemios, al nacer en los cóndilos del fémur, nos permiten doblar la rodilla y dar saltos explosivos. En cambio, el sóleo, que se origina solo en la tibia y el peroné, es el incansable guardián de nuestra postura. Mientras estás de pie, es el sóleo quien evita que te caigas hacia adelante, trabajando con fibras de contracción lenta que resisten la fatiga.
Pero su importancia trasciende el movimiento. En medicina, al sóleo se le denomina el "segundo corazón". Dentro de su estructura posee grandes senos venosos; cada vez que caminamos, el músculo exprime estas venas, impulsando la sangre contra la gravedad hacia el torso. Una debilidad en este grupo no solo limita tu capacidad de correr, sino que predispone a varices o edemas.

Clínicamente, es propenso a la "pedrada" o rotura fibrilar, común en deportes de frenado brusco. Por ello, entender que el tríceps sural necesita tanto flexibilidad como fuerza es esencial para cualquier persona. No solo es el motor que nos empuja hacia adelante, sino la bomba que mantiene nuestro sistema circulatorio en equilibrio. Cuidar de él es, literalmente, cuidar el paso y la vida.

° Moore, K. L., & Dalley, A. F. (2018). Anatomía con orientación clínica. Ed. Lippincott Williams & Wilkins.
° Rouvière, H., & Delmas, A. (2005). Anatomía humana: Descriptiva, topográfica y funcional. Elsevier España.
° Fisioterapia-Online / Ocronos. Revisiones clínicas sobre el complejo gastrosóleo.

03/01/2026

Dirección

Archer Harman S11-212 Entre Francisco Muñoz Y Huacho
Quito
170604

Teléfono

+593979095981

Página web

Notificaciones

Sé el primero en enterarse y déjanos enviarle un correo electrónico cuando Plantillas Ortopédicas publique noticias y promociones. Su dirección de correo electrónico no se utilizará para ningún otro fin, y puede darse de baja en cualquier momento.

Contacto El Consultorio

Enviar un mensaje a Plantillas Ortopédicas:

Compartir

Share on Facebook Share on Twitter Share on LinkedIn
Share on Pinterest Share on Reddit Share via Email
Share on WhatsApp Share on Instagram Share on Telegram

Categoría