16/10/2021
Massage doesn’t just make muscles feel better, it makes them heal faster and stronger.
Massage has been used to treat sore, injured muscles for more than 3,000 years, and today many athletes swear by massage guns to rehabilitate their bodies. But other than making people feel good, do these “mechanotherapies” actually improve healing after severe injury? According to a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences (SEAS), the answer is “yes.”
Using a custom-designed robotic system to deliver consistent and tunable compressive forces to mice’s leg muscles, the team found that this mechanical loading (ML) rapidly clears immune cells called neutrophils out of severely injured muscle tissue. This process also removed inflammatory cytokines released by neutrophils from the muscles, enhancing the process of muscle fiber regeneration. The research is published in Science Translational Medicine.
“Lots of people have been trying to study the beneficial effects of massage and other mechanotherapies on the body, but up to this point it hadn’t been done in a systematic, reproducible way. Our work shows a very clear connection between mechanical stimulation and immune function. This has promise for regenerating a wide variety of tissues including bone, tendon, hair, and skin, and can also be used in patients with diseases that prevent the use of drug-based interventions,” said first author Bo Ri Seo, Ph.D., who is a Postdoctoral Fellow in the lab of Core Faculty member Dave Mooney, Ph.D. at the Wyss Institute and SEAS.
“These findings are remarkable because they indicate that we can influence the function of the body’s immune system in a drug-free, non-invasive way,” said Walsh, who is also the Paul A. Maeder Professor of Engineering and Applied Science at SEAS and whose group is experienced in developing wearable technology for diagnosing and treating disease. “This provides great motivation for the development of external, mechanical interventions to help accelerate and improve muscle and tissue healing that have the potential to be rapidly translated to the clinic.”
The team is continuing to investigate this line of research with multiple projects in the lab. They plan to validate this mechanotherapeutic approach in larger animals, with the goal of being able to test its efficacy on humans. They also hope to test it on different types of injuries, age-related muscle loss, and muscle performance enhancement.
“The fields of mechanotherapy and immunotherapy rarely interact with each other, but this work is a testament to how crucial it is to consider both physical and biological elements when studying and working to improve human health,” said Mooney, who is the corresponding author of the paper and the Robert P. Pinkas Family Professor of Bioengineering at SEAS.
“The idea that mechanics influence cell and tissue function was ridiculed until the last few decades, and while scientists have made great strides in establishing acceptance of this fact, we still know very little about how that process actually works at the organ level. This research has revealed a previously unknown type of interplay between mechanobiology and immunology that is critical for muscle tissue healing, in addition to describing a new form of mechanotherapy that potentially could be as potent as chemical or gene therapies, but much simpler and less invasive,” said Wyss Founding Director Don Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at (HMS) and the Vascular Biology Program at Boston Children’s Hospital, as well as Professor of Bioengineering at SEAS.
https://wyss.harvard.edu/news/massage-doesnt-just-make-muscles-feel-better-it-makes-them-heal-faster-and-stronger/?fbclid=IwAR3XjErC4j9XeikTV36k1gESv_OgSM0v9w-4GB9pasNDMoKDKVutMgVRwoI
Study confirms link between mechanotherapy and immunotherapy in muscle regeneration in mice