Hellenic Pharmaceutical Network

Hellenic Pharmaceutical Network The pharmaceutical industry develops, produces, and markets drugs or pharmaceuticals licensed for use as medications. Food and Drug Administration (FDA).

The earliest drugstores date to the Middle Ages. The first known drugstore was opened by Arabian pharmacists in Baghdad in 754,[2] and many more soon began operating throughout the medieval Islamic world and eventually medieval Europe. By the 19th century, many of the drugstores in Europe and North America had eventually developed into larger pharmaceutical companies. Most of today's major pharmaceutical companies were founded in the late 19th and early 20th centuries. Key discoveries of the 1920s and 1930s, such as insulin and penicillin, became mass-manufactured and distributed. Switzerland, Germany and Italy had particularly strong industries, with the United Kingdom, the United States, Belgium and the Netherlands following suit. Legislation was enacted to test and approve drugs and to require appropriate labeling. Prescription and non-prescription drugs became legally distinguished from one another as the pharmaceutical industry matured. The industry got underway in earnest from the 1950s, due to the development of systematic scientific approaches, understanding of human biology (including DNA) and sophisticated manufacturing techniques. Numerous new drugs were developed during the 1950s and mass-produced and marketed through the 1960s. These included the first oral contraceptive, "The Pill", Cortisone, blood-pressure drugs and other heart medications. MAO inhibitors, chlorpromazine (Thorazine), haloperidol (Haldol) and the tranquilizers ushered in the age of psychiatric medication. Diazepam (Valium), discovered in 1960, was marketed from 1963 and rapidly became the most prescribed drug in history, prior to controversy over dependency and habituation. Attempts were made to increase regulation and to limit financial links between companies and prescribing physicians, including by the relatively new U.S. Such calls increased in the 1960s after the thalidomide tragedy came to light, in which the use of a new anti-emetic in pregnant women caused severe birth defects. In 1964, the World Medical Association issued its Declaration of Helsinki, which set standards for clinical research and demanded that subjects give their informed consent before enrolling in an experiment. Pharmaceutical companies became required to prove efficacy in clinical trials before marketing drugs. Cancer drugs were a feature of the 1970s. From 1978, India took over as the primary center of pharmaceutical production without patent protection.[3]

The industry remained relatively small scale until the 1970s when it began to expand at a greater rate.[citation needed] Legislation allowing for strong patents, to cover both the process of manufacture and the specific products, came into force in most countries. By the mid-1980s, small biotechnology firms were struggling for survival, which led to the formation of mutually beneficial partnerships with large pharmaceutical companies and a host of corporate buyouts of the smaller firms. Pharmaceutical manufacturing became concentrated, with a few large companies holding a dominant position throughout the world and with a few companies producing medicines within each country. The pharmaceutical industry entered the 1980s pressured by economics and a host of new regulations, both safety and environmental, but also transformed by new DNA chemistries and new technologies for analysis and computation.[citation needed] Drugs for heart disease and for AIDS were a feature of the 1980s, involving challenges to regulatory bodies and a faster approval process. Managed care and Health maintenance organizations (HMOs) spread during the 1980s as part of an effort to contain rising medical costs, and the development of preventative and maintenance medications became more important. A new business atmosphere became institutionalized in the 1990s, characterized by mergers and takeovers, and by a dramatic increase in the use of contract research organizations for clinical development and even for basic R&D. The pharmaceutical industry confronted a new business climate and new regulations, born in part from dealing with world market forces and protests by activists in developing countries. Animal Rights activism was also a challenge. Marketing changed dramatically in the 1990s. The Internet made possible the direct purchase of medicines by drug consumers and of raw materials by drug producers, transforming the nature of business. In the US, Direct-to-consumer advertising proliferated on radio and TV because of new FDA regulations in 1997 that liberalized requirements for the presentation of risks. The new antidepressants, the SSRIs, notably Fluoxetine (Prozac), rapidly became bestsellers and marketed for additional disorders. Drug development progressed from a hit-and-miss approach to rational drug discovery in both laboratory design and natural-product surveys. Demand for nutritional supplements and so-called alternative medicines created new opportunities and increased competition in the industry. Controversies emerged around adverse effects, notably regarding Vioxx in the US, and marketing tactics. Pharmaceutical companies became increasingly accused of disease mongering or over-medicalizing personal or social problems.[4]

Research and development[edit]
Main articles: Drug discovery and Drug development
Drug discovery is the process by which potential drugs are discovered or designed. In the past most drugs have been discovered either by isolating the active ingredient from traditional remedies or by serendipitous discovery. Modern biotechnology often focuses on understanding the metabolic pathways related to a disease state or pathogen, and manipulating these pathways using molecular biology or biochemistry. A great deal of early-stage drug discovery has traditionally been carried out by universities and research institutions. Drug development refers to activities undertaken after a compound is identified as a potential drug in order to establish its suitability as a medication. Objectives of drug development are to determine appropriate formulation and dosing, as well as to establish safety. Research in these areas generally includes a combination of in vitro studies, in vivo studies, and clinical trials. The amount of capital required for late stage development has made it a historical strength of the larger pharmaceutical companies.[5]

Often, large multinational corporations exhibit vertical integration, participating in a broad range of drug discovery and development, manufacturing and quality control, marketing, sales, and distribution. Smaller organizations, on the other hand, often focus on a specific aspect such as discovering drug candidates or developing formulations. Often, collaborative agreements between research organizations and large pharmaceutical companies are formed to explore the potential of new drug substances. More recently, multi-nationals are increasingly relying on contract research organizations to manage drug development.[6]

The cost of innovation[edit]
Drug companies are like other companies in that they manufacture products that must be sold for a profit in order for the company to survive and grow. They are different from some companies because the drug business is very risky. For instance, only one out of every ten thousand discovered compounds actually becomes an approved drug for sale. Much expense is incurred in the early phases of development of compounds that will not become approved drugs.[7] In addition, it takes about 7 to 10 years and only 3 out of every 20 approved drugs bring in sufficient revenue to cover their developmental costs, and only 1 out of every 3 approved drugs generates enough money to cover the development costs of previous failures. This means that for a drug company to survive, it needs to discover a blockbuster (billion-dollar drug) every few years.[7]

Drug discovery and development is very expensive; of all compounds investigated for use in humans only a small fraction are eventually approved in most nations by government appointed medical institutions or boards, who have to approve new drugs before they can be marketed in those countries. In 2010 18 NMEs (New Molecular Entities) were approved and three biologics by the FDA, or 21 in total, which is down from 26 in 2009 and 24 in 2008. On the other hand, there were only 18 approvals in total in 2007 and 22 back in 2006. Since 2001, the Center for Drug Evaluation and Research has averaged 22.9 approvals a year.[8] This approval comes only after heavy investment in pre-clinical development and clinical trials, as well as a commitment to ongoing safety monitoring. Drugs which fail part-way through this process often incur large costs, while generating no revenue in return. If the cost of these failed drugs is taken into account, the cost of developing a successful new drug (new chemical entity, or NCE), has been estimated at about 1.3 billion USD[9](not including marketing expenses). Professors Light and Lexchin reported in 2012, however, that the rate of approval for new drugs has been a relatively stable average rate of 15 to 25 for decades.[10]

Industry-wide research and investment reached a record $65.3 billion in 2009.[11] While the cost of research in the U.S. was about $34.2 billion between 1995 and 2010, revenues rose faster (revenues rose by $200.4 billion in that time).[10]

A study by the consulting firm Bain & Company reported that the cost for discovering, developing and launching (which factored in marketing and other business expenses) a new drug (along with the prospective drugs that fail) rose over a five-year period to nearly $1.7 billion in 2003.[12] According to Forbes, development costs between $4 billion to $11 billion per drug.[13]
These estimates also take into account the opportunity cost of investing capital many years before revenues are realized (see Time-value of money). Because of the very long time needed for discovery, development, and approval of pharmaceuticals, these costs can accumulate to nearly half the total expense. Some approved drugs, such as those based on re-formulation of an existing active ingredient (also referred to as Line-extensions) are much less expensive to develop. Calculations and claims in this area are controversial because of the implications for regulation and subsidization of the industry through tax credits and federally funded research grants.[

Address

Holargos

Website

Alerts

Be the first to know and let us send you an email when Hellenic Pharmaceutical Network posts news and promotions. Your email address will not be used for any other purpose, and you can unsubscribe at any time.

Share

Share on Facebook Share on Twitter Share on LinkedIn
Share on Pinterest Share on Reddit Share via Email
Share on WhatsApp Share on Instagram Share on Telegram