Centre thérapeutique Wagner

Centre thérapeutique Wagner Therapiepraxis
Kinésithérapie

17/08/2025
29/05/2025

🔥👉Entrapments des Nervus tibialis (TN) und Tarsaltunnelsyndrom (TTS)

Die Einklemmung (Entrapment) des Nervus tibialis (TN) im Tarsaltunnel (TT), der sich unterhalb des Retinaculum flexorum an der Innenseite des Sprunggelenks befindet, verursacht das Tarsaltunnelsyndrom (TTS). Diese Erkrankung, die seltener auftritt als andere Nervenkompressionssyndrome, wird häufig fälschlicherweise als Plantarfasziopathie diagnostiziert.

Der Tarsaltunnel, der vom medialen Malleolus, dem Calcaneus und dem Retinaculum flexorum begrenzt wird, enthält den TN, Sehnen und Blutgefäße. Der TN entspringt aus dem Nervus ischidadicus und innerviert die Muskeln des Unterschenkels und des Fußes (z. B. Soleus, Flexor digitorum longus) und versorgt die Sohle und die medialen Zehen sensorisch.

Das Tarsaltunnelsyndrom (TTS) ist eine periphere Neuropathie, die als Folge einer Kompression des N. tibialis posterior oder der medialen und lateralen Plantarnervenäste unter dem Retinaculum flexorum auftritt.

👉Jetzt auf physiomeets.science lesen! 🥳💪

20/05/2025

🌀 Approach to Vertigo

Vertigo = a sensation of spinning or movement. Differentiate central vs. peripheral causes early.



🔴 Central Etiology

Clues:
•Direction-changing nystagmus
•Severe imbalance
•Neurological symptoms

🧠 Causes:
➊ Vestibular Migraine
• Recurrent episodes (minutes–hours)
• Often with headache and photophobia
➋ Vertebrobasilar TIA/Stroke
• Single or recurrent episodes
• Older age, vascular risk factors
➌ Multiple Sclerosis
• Progressive symptoms
• Young adults (20–40 years)
• ± Optic neuritis or INO (internuclear ophthalmoplegia)
➍ Brain Tumor
• Gradual progression
• Headache, hydrocephalus, focal deficits



🟠 Peripheral Etiology

Clues:
•Unidirectional nystagmus
•± Tinnitus, hearing loss
•Symptoms worsen with head movement

👂 Causes:
➊ Benign Paroxysmal Positional Vertigo (BPPV)
• Recurrent, brief episodes (seconds)
• Triggered by position change
• Positive Dix-Hallpike test
• Treatment: Epley maneuver
➋ Ménière’s Disease
• Recurrent episodes (minutes–hours)
• Sensorineural hearing loss + tinnitus
• Treatment: Salt restriction, diuretics
➌ Vestibular Neuritis
• Acute, single episode lasting days
• Often post-viral
• Hearing spared
• Treatment: Steroids, supportive care
➍ Labyrinthitis
• Like vestibular neuritis with hearing loss
• Usually viral
➎ Medication Effects
• Consider aminoglycosides, loop diuretics
• Discontinue offending agent
➏ Vestibular Schwannoma
• Gradual, one-sided hearing loss
• Order MRI/CT



🧪 Helpful Clinical Signs
•Test of Skew: Vertical ocular misalignment → central
•INO (Internuclear Ophthalmoplegia): Suggests MS or brainstem lesion
•Dix-Hallpike: Confirms BPPV (reproduces vertigo + nystagmus)

17/05/2025

Hot off the press 🔥

How does chronic psychosocial distress induce pain? Focus on neuroinflammation and neuroplasticity changes

🤕 Chronic primary pain (CPP), particularly fibromyalgia (FM), is a debilitating and poorly understood condition characterized by persistent pain without identifiable peripheral tissue damage. It affects an estimated 2–4% of the population, with a significant predominance in women, and is often accompanied by fatigue, sleep disturbances, and cognitive impairment (Macfarlane et al., 2017; Creed, 2020). Unlike secondary chronic pain, CPP lacks a discernible etiology, making treatment highly challenging.

🧠 A growing body of evidence implicates chronic psychosocial distress as a critical etiological and exacerbating factor (Nicholas et al., 2019; Barke, 2019). Converging clinical and preclinical studies highlight the interplay between stress, neuroinflammation, and altered neuroplasticity as pivotal in the pathogenesis of stress-induced chronic pain (Calcia et al., 2016; DiSabato et al., 2016).

💡 Neuroimmune interactions, particularly involving glial cell activation and inflammatory cytokine release, have emerged as central to this process (Albrecht et al., 2019). These responses are modulated by stress and contribute to both the sensitization of nociceptive pathways and the development of mood disorders, which are frequent comorbidities in CPP patients (Lithwick et al., 2013; Galvez-Sánchez et al., 2019).

📘 A brand-new review by Fülöp et al. (2025) integrates clinical and preclinical findings to elucidate how chronic psychosocial stress drives pain via neuroinflammatory and neuroplastic changes, offering insight into potential therapeutic targets for this complex and unmet medical need.

🔑 Key Points

🧩 Etiology and Challenges of CPP:
Chronic psychosocial distress is the only identified etiological factor for CPP, particularly FM. Classical analgesics are largely ineffective; current therapies rely on antidepressants, antiepileptics, and psychological interventions.

⚖️ Stress-Pain Interaction:
Longitudinal clinical studies demonstrate positive correlations between stress, pain intensity, and psychological comorbidities (Bergenheim et al., 2019; Fillingim et al., 2020). Stress reduces nociceptive thresholds in FM patients, increasing mechanical and thermal sensitivity (Crettaz et al., 2013).

🐁 Animal Models:
Rodent models using chronic stress paradigms (e.g., swim stress, cold stress, restraint stress) replicate FM-like symptoms including hyperalgesia and mood disturbances. These models show increased microglial and astrocyte activation and elevated cytokines such as IL-1 and TNF-α in the central nervous system (Quintero et al., 2003; Fülöp et al., 2023).

🧠 Mood Disorders as Comorbidities:
Depression and anxiety frequently co-occur with FM, exacerbating symptoms and contributing to treatment resistance. These mood disorders share common pathophysiological mechanisms with chronic pain, including stress-induced neuroinflammation and synaptic remodeling (Pagliusi et al., 2020; Liu et al., 2020).

🔬 Neuroinflammation and Neuroplasticity:
PET imaging studies reveal microglial activation in brain regions involved in pain processing in FM patients (Albrecht et al., 2019). Increased functional connectivity within the salience and default mode networks suggests maladaptive neuroplastic changes (McCutcheon et al., 2019; Čeko et al., 2020).

🧪 Molecular Mediators:
Key mediators implicated in these processes include IL-1, brain-derived neurotrophic factor (BDNF), substance P, and hemokinin-1. Experimental evidence indicates that genetic or pharmacological manipulation of these targets in animal models can reduce stress-induced hyperalgesia and mood-related behaviors (Borbély et al., 2023; Jablochkova et al., 2019).

💡 Therapeutic Implications:
Targeting neuroinflammation—particularly through modulation of IL-1 signaling and glial activation—may provide novel approaches for pain management. In addition, studies showing that immunoglobulin G autoantibodies from FM patients can induce pain symptoms in mice suggest a potential autoimmune component in FM pathogenesis (Goebel et al., 2021).

📷 Figure: Chronic psychosocial stress triggers neuroinflammation and neuroplasticity alterations in brain regions like the prefrontal cortex (PFC), amygdala (A), hippocampus (HI), periaqueductal gray (PAG), and somatosensory cortex (SSC), which are also implicated in nociceptive processing, linking chronic pain, mood disorders, and stress.

📒 References

Albrecht, D. S., Forsberg, A., Sandström, A., Bergan, C., Kadetoff, D., Protsenko, E., ... & Loggia, M. L. (2019). Brain glial activation in fibromyalgia—A multi-site positron emission tomography investigation. Brain, Behavior, and Immunity, 75, 72–83. https://doi.org/10.1016/j.bbi.2018.09.018

Barke, A. (2019). Chronic pain has arrived in the ICD-11. International Association for the Study of Pain (IASP).

Bergenheim, A., Juhlin, S., Nordeman, L., Joelsson, M., & Mannerkorpi, K. (2019). Stress levels predict substantial improvement in pain intensity after 10 to 12 years in women with fibromyalgia and chronic widespread pain: A cohort study. BMC Rheumatology, 3, 4. https://doi.org/10.1186/s41927-019-0072-9

Borbély, É., Kecskés, A., Kun, J., Kepe, E., Fülöp, B., Kovács-Rozmer, K., ... & Helyes, Z. (2023). Hemokinin-1 is a mediator of chronic restraint stress-induced pain. Scientific Reports, 13, 1–15. https://doi.org/10.1038/s41598-023-46402-7

Calcia, M. A., Bonsall, D. R., Bloomfield, P. S., Selvaraj, S., Barichello, T., & Howes, O. D. (2016). Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology, 233(9), 1637–1650. https://doi.org/10.1007/s00213-016-4218-9

Čeko, M., Frangos, E., Gracely, J. L., Richards, E. A., Wang, B., Schweinhardt, P., & Bushnell, M. C. (2020). Default mode network changes in fibromyalgia patients are largely dependent on current clinical pain. NeuroImage, 216, 116877. https://doi.org/10.1016/j.neuroimage.2020.116877

Creed, F. (2020). A review of the incidence and risk factors for fibromyalgia and chronic widespread pain in population-based studies. Pain, 161(6), 1169–1176. https://doi.org/10.1097/j.pain.0000000000001819

Crettaz, B., Marziniak, M., Willeke, P., Young, P., Hellhammer, D., Stumpf, A., & Burgmer, M. (2013). Stress-induced allodynia—Evidence of increased pain sensitivity in healthy humans and patients with chronic pain after experimentally induced psychosocial stress. PLoS ONE, 8(8), e69460. https://doi.org/10.1371/journal.pone.0069460

DiSabato, D. J., Quan, N., & Godbout, J. P. (2016). Neuroinflammation: The devil is in the details. Journal of Neurochemistry, 139(S2), 136–153. https://doi.org/10.1111/jnc.13607

Fillingim, R. B., Ohrbach, R., Greenspan, J. D., Sanders, A. E., Rathnayaka, N., Maixner, W., & Slade, G. D. (2020). Associations of psychologic factors with multiple chronic overlapping pain conditions. Journal of Oral & Facial Pain and Headache, 34(s1), s85–s100. https://doi.org/10.11607/ofph.2584

Fülöp, B., Hunyady, Á., Bencze, N., Kormos, V., Szentes, N., Dénes, Á., ... & Helyes, Z. (2023). IL-1 mediates chronic stress-induced hyperalgesia accompanied by microglia and astroglia morphological changes in pain-related brain regions in mice. International Journal of Molecular Sciences, 24(6), 5479. https://doi.org/10.3390/ijms24065479

Fülöp, B., Borbély, É., & Helyes, Z. (2025). How does chronic psychosocial distress induce pain? Focus on neuroinflammation and neuroplasticity changes. Brain, Behavior, & Immunity – Health, 44, 100964. https://doi.org/10.1016/j.bbih.2025.100964

Galvez-Sánchez, C. M., Duschek, S., & Del Paso, G. A. R. (2019). Psychological impact of fibromyalgia: Current perspectives. Psychology Research and Behavior Management, 12, 117–127. https://doi.org/10.2147/prbm.s178240

Goebel, A., Krock, E., Gentry, C., Israel, M. R., Jurczak, A., Urbina, C. M., ... & Svensson, C. I. (2021). Passive transfer of fibromyalgia symptoms from patients to mice. Journal of Clinical Investigation, 131(13), e144201. https://doi.org/10.1172/jci144201

Govindarajan, A., Rao, B. S. S., Nair, D., Trinh, M., Mawjee, N., Tonegawa, S., & Chattarji, S. (2006). Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proceedings of the National Academy of Sciences, 103(36), 13208–13213. https://doi.org/10.1073/pnas.0605180103

Lithwick, A., Lev, S., & Binshtok, A. M. (2013). Chronic pain-related remodeling of cerebral cortex—“Pain memory”: A possible target for treatment of chronic pain. Pain Management, 3(1), 35–45. https://doi.org/10.2217/pmt.12.74

Liu, Y., Zhang, T., Meng, D., Sun, L., Yang, G., He, Y., & Zhang, C. (2020). Involvement of CX3CL1/CX3CR1 in depression and cognitive impairment induced by chronic unpredictable stress and relevant underlying mechanism. Behavioural Brain Research, 381, 112371. https://doi.org/10.1016/j.bbr.2019.112371

Macfarlane, G. J., Kronisch, C., Dean, L. E., Atzeni, F., Häuser, W., Fluss, E., ... & Kosek, E. (2017). EULAR revised recommendations for the management of fibromyalgia. Annals of the Rheumatic Diseases, 76(2), 318–328. https://doi.org/10.1136/annrheumdis-2016-209724

McCutcheon, R. A., Abi-Dargham, A., & Howes, O. D. (2019). Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends in Neurosciences, 42(3), 205–220. https://doi.org/10.1016/j.tins.2018.12.004

Nicholas, M., Vlaeyen, J. W. S., Rief, W., Barke, A., Aziz, Q., Benoliel, R., ... & Treede, R. D. (2019). The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain, 160(1), 28–37. https://doi.org/10.1097/j.pain.0000000000001390

Pagliusi, S. R., Piardi, T., Curia, G., & Ferrini, F. (2020). Subthreshold social defeat stress potentiates mechanical allodynia and depressive-like behaviour: The role of NPY-Y1 receptor. Behavioural Brain Research, 392, 112724. https://doi.org/10.1016/j.bbr.2020.112724

Quintero, L., Cárdenas, R., Suárez-Roca, H., & Maixner, W. (2003). Inflammation and hyperalgesia induced by repeated cold stress and spinal glucocorticoid receptors. Brain Research, 965(1–2), 212–219. https://doi.org/10.1016/s0006-8993(02)04162-4

Alex (Kinésithérapie)
23/02/2023

Alex (Kinésithérapie)

17/04/2019

This was originally posted on Jarod Hall’s blog and shared here with permission – enjoy! Background: As far back as I can remember through undergrad...

03/01/2019
11/12/2018
28/11/2018
02/11/2018

Adresse

27, Rue Michel Lentz
Niederanven
L-6944

Heures d'ouverture

Lundi 08:00 - 20:00
Mardi 08:00 - 20:00
Mercredi 08:00 - 20:00
Jeudi 08:00 - 20:00
Vendredi 08:00 - 20:00

Téléphone

+35226340805

Site Web

http://www.annen-vital.lu/

Notifications

Soyez le premier à savoir et laissez-nous vous envoyer un courriel lorsque Centre thérapeutique Wagner publie des nouvelles et des promotions. Votre adresse e-mail ne sera pas utilisée à d'autres fins, et vous pouvez vous désabonner à tout moment.

Contacter La Pratique

Envoyer un message à Centre thérapeutique Wagner:

Partager

Share on Facebook Share on Twitter Share on LinkedIn
Share on Pinterest Share on Reddit Share via Email
Share on WhatsApp Share on Instagram Share on Telegram