Tratamiento CORRECTIVO significa que tratamos todas las enfermedades desde la raíz y no solo los síntomas. Además INTEGRAL es porque atendemos de forma física, química, nutricional y emocional, sin medicamentos, sin infiltraciones ni cirugías.
Dr. David Garita Graduado en: Palmer College of Chiropractic. Davenport, Iowa. USA Con sub especialidad en Alergias certificado en: Fullerton, CA. y con Medicina Funcional en Texas USA.
La Quiropráctica del Dr. David Garita
En especial mis métodos integrales de tratamiento no solo son sobre la estructura de la Columna la cual es muy Importante… Sino más acerca de estimular al SISTEMA NERVIOSO para promover su comunicación adecuada y que el cuerpo entero sane. Cada Tratamiento Quiropráctico va a generar un cambio por medio de la propiocepción a través de los mecanorreceptores de cada segmento vertebral y cambiará la forma en cómo su cerebro se comunica con esa parte en particular del cuerpo, además de estimular dicha articulación, los ajustes también estimularán órganos y tejidos correspondientes al área de la columna en la cual se está trabajando.
El Sistema Nervioso es básicamente como un mapa gigante del cuerpo entero. Cada órgano o dermatoma está conectado al cerebro y esa conexión puede ser bloqueada o irritada parcialmente. En palabras sencillas, nuestro tratamiento Quiropráctico Integral Funcional estimula al Sistema Nervioso de varias maneras logrando obtener resultados sorprendentes. No todos los Doctores en Quiropráctica comprenden o respetan la maravillosa capacidad del organismo de sanar por sí mismo dada su Inteligencia Innata.
Hay muy pocos “Quiroprácticos Correctivos Integrales Funcionales” que atiendan globalmente desde un amplio enfoque físico, químico, nutricional y emocional. La mayoría de los Quiroprácticos son solo de mantenimiento o de sintomatología, es decir, solo ayudan de momento pero no corrigen el problema de raíz.
Recomiendo mucha precaución en escoger al profesional de la salud, de esta decisión depende los resultados que ustedes desean alcanzar.
NOTA: Debido a que soy un Doctor Quiropráctico Correctivo Funcional los estudios realizados por otras especialidades NO me son funcionales para atender sus problemas de RAÍZ, en particular si estamos hablando de una Resonancia Magnética Horizontal, ya que esta técnica NO toma en cuenta que la función de la Columna que es sostener de manera vertical. Esto se sabe desde hace más de 20 años en Europa y por esta razón las Radiografías Biomecánicas son únicas y exclusivas de mi especialidad la cual respeta a una serie de criterios, por lo cual fue necesario que un Gabinete Radiológico Externo ( Centro de Radiodiagnóstico & Imagen ) nos apoyara e invirtiera en equipo especial para lograr imágenes específicas con profesionalismo, alta calidad, y sobre todo de acuerdo a mis lineamientos. En caso de que usted le interese traer estas Radiografías a su primer cita para evitar vueltas, citas, etc. puede solicitar a nuestra Recepción le envíen vía WhatsApp la Solicitud de Radiografías Biomecánicas y el único lugar especializado para realizarlas.
www.drdavidgarita.com
FUENTES CIENTÍFICAS QUE NOS RESPALDAN
FUNCTIONAL MRI REFERENCES
1. Surgical or nonoperative treatment for lumbar spinal stenosis? A randomized controlled trial. Malmivaara A, Slatis P, Heliovaara M, et al. Spine. 2007;32:1–8. [Abstract] [Google Scholar]
2. Potential and limitations of neural decompression in extreme lateral interbody fusion-A systematic review. Lang G, Perrech M, Navarro-Ramirez R, et al. World Neurosurg. 2017;101:99–113. [Abstract] [Google Scholar]
3. Minimally invasive transforaminal lumbar interbody fusion: meta-a**lysis of the fusion rates. What is the optimal graft material? Parajon A, Alimi M, Navarro-Ramirez R, et al. Neurosurgery. 2017;81:958–971. [Abstract] [Google Scholar]
4. Spinal ca**l size and clinical symptoms among persons diagnosed with lumbar spinal stenosis. Geisser ME, Haig AJ, Tong HC, et al. Clin J Pain. 2007;23:780–785. [Abstract] [Google Scholar]
5. Gait a**lysis does not correlate with clinical and MR imaging parameters in patients with symptomatic lumbar spinal stenosis. Zeifang F, Schiltenwolf M, Abel R, Moradi B. BMC Musculoskelet Disord. 2008;9:89. [Europe PMC free article] [Abstract] [Google Scholar]
6. The lumbar spine as a dynamic structure depicted in upright MRI. Kubosch D, Vicari M, Siller A, et al. Medicine. 2015;94:1299. [Europe PMC free article] [Abstract] [Google Scholar]
7. Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Splendiani A, Perri M, Grattacaso G, et al. Radiol Med. 2016;121:38–44. [Abstract] [Google Scholar]
8. Occult neural foraminal stenosis caused by association between disc degeneration and facet joint osteoarthritis: demonstration with dedicated upright MRI system. Splendiani A, Ferrari F, Barile A, Masciocchi C, Gallucci M. Radiol Med. 2014;119:164–174. [Abstract] [Google Scholar]
9. Lumbar foraminal stenosis: critical heights of the intervertebral discs and foramina. A cryomicrotome study in cadavera. Hasegawa T, An HS, Haughton VM, Nowicki BH. https://journals.lww.com/jbjsjournal/Abstract/1995/01000/Lumbar_foraminal_stenosis___critical_heights_of.5.aspx. J Bone Joint Surg Am. 1995;77:32–38. [Abstract] [Google Scholar]
10. Axial loaded MRI of the lumbar spine. Saifuddin A, Blease S, MacSweeney E. Clin Radiol. 2003;58:661–671. [Abstract] [Google Scholar]
11. Segmental spinal ca**l volume in patients with degenerative spondylolisthesis. Miao J, Wang S, Park WM, et al. Spine J. 2013;13:706–712. [Europe PMC free article] [Abstract] [Google Scholar]
12. Upright, weight-bearing, dynamic-kinetic MRI of the spine: initial results. Jinkins JR, Dworkin JS, Damadian RV. Eur Radiol. 2005;15:1815–1825. [Abstract] [Google Scholar]
13. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Fujiwara A, An HS, Lim TH, Haughton VM. Spine. 2001;26:876–882. [Abstract] [Google Scholar]
14. Upright positional MRI of the lumbar spine. Alyas F, Connell D, Saifuddin A. Clin Radiol. 2008;63:1035–1048. [Abstract] [Google Scholar]
15. Changes in cross-sectional measurements of the spinal ca**l and intervertebral foramina as a function of body position: in vivo studies on an open-configuration MR system. Schmid MR, Stucki G, Duewell S, Wildermuth S, Romanowski B, Hodler J. Am J Roentgenol. 1999;172:1095–1102. [Abstract] [Google Scholar]
16. Lumbar spine disc heights and curvature: upright posture vs. supine compression harness. Aviation, space, and environmental medicine. Lee SU, Hargens AR, Fredericson M, Lang PK. http://www.ingentaconnect.com/content/asma/asem/2003/00000074/00000005/art00003. Aviat Space Environ Med. 2003;74:512–516. [Abstract] [Google Scholar]
17. Morphological change and development of high-intensity zones in the lumbar spine from neutral to extension positioning during upright MRI. Alyas F, Sutcliffe J, Connell D, Saifuddin A. Clin Radiol. 2010;65:176–180. [Abstract] [Google Scholar]
18. Missed lumbar disc herniations diagnosed with kinetic magnetic resonance imaging. Zou J, Yang H, Miyazaki M, et al. Spine. 2008;33:140–144. [Abstract] [Google Scholar]
19. Factors affecting dynamic foraminal stenosis in the lumbar spine. Singh V, Montgomery SR, Aghdasi B, Inoue H, Wang JC, Daubs MD. Spine J. 2013;13:1080–1087. [Abstract] [Google Scholar]
20. The distended facet sign: an indicator of position-dependent spinal stenosis and degenerative spondylolisthesis. Ben-Galim P, Reitman CA. Spine J. 2007;7:245–248. [Abstract] [Google Scholar]
21. Upright, prone, and supine spinal morphology and alignment in adolescent idiopathic scoliosis. Brink RC, Colo D, Schlosser TPC, et al. Scoliosis Spinal Disord. 2017;12:6. [Europe PMC free article] [Abstract] [Google Scholar]
22. Dynamic changes in the dimensions of the lumbar spinal ca**l: an experimental study in vitro. Schonstrom N, Lindahl S, Willen J, Hansson T. J Orthop Res. 1989;7:115–121. [Abstract] [Google Scholar]
23. Evaluation of intervertebral disc herniation and hypermobile intersegmental instability in symptomatic adult patients undergoing recumbent and upright MRI of the cervical or lumbosacral spines. Ferreiro Perez A, Garcia Isidro M, Ayerbe E, Castedo J, Jinkins JR. Eur J Radiol. 2007;62:444–448. [Abstract] [Google Scholar]
24. Intervertebral disk appearance correlated with stiffness of lumbar spinal motion segments. Haughton VM, Lim TH, An H. http://www.ajnr.org/content/20/6/1161.short. AJNR Am J Neuroradiol. 1999;20:1161–1165. [Abstract] [Google Scholar]
25. Positional MR imaging of the lumbar spine: does it demonstrate nerve root compromise not visible at conventional MR imaging? Weishaupt D, Schmid MR, Zanetti M, et al. Radiology. 2000;215:247–253. [Abstract] [Google Scholar]
26. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. Adams MA, Hutton WC. J Bone Joint Surg Br. 1980;62:358–362. [Abstract] [Google Scholar]
27. A new volumetric radiological method to assess indirect decompression after extreme lateral interbody fusion using a high-resolution intraoperative computed tomography. Navarro-Ramirez R, Berlin C, Lang G, et al. World Neurosurg. 2018;109:59–67. [Abstract] [Google Scholar]
28. In vivo dynamic changes of dimensions in the lumbar intervertebral foramen. Zhong W, Driscoll SJ, Tsai TY, et al. Spine J. 2015;15:1653–1659. [Europe PMC free article] [Abstract] [Google Scholar]
29. A stress MRI of the shoulder for evaluation of ligamentous stabilizers in acute and chronic acromioclavicular joint instabilities. Izadpanah K, Winterer J, Vicari M, et al. J Magn Reson Imaging. 2013;37:1486–1492. [Abstract] [Google Scholar]
www.drdavidgarita.com