09/03/2024
Thick filaments. The larger, thick filaments, also called myosin filaments, are made mostly of bundled molecules of the protein myosin, but they also contain ATPase enzymes, which split ATP to generate the power for muscle contraction.
• Cross bridges. Notice that the midparts of the thick filaments are smooth, but their ends are studded with thick projections; these projections, or myosin beads, are called cross bridges when they link the thick and thin filaments together during contraction.
• Thin filaments. The thin filaments are composed of the contractile protein called actin, plus some regulatory proteins that play a role in allowing (or preventing) myosin-bead binding to actin; the thin filaments, also called actin filaments, are anchored to the Z disc (a disclike membrane).
• Sarcoplasmic reticulum. Another very important muscle fiber organelle is the sarcoplasmic reticulum, a specialized smooth endoplasmic reticulum; the interconnecting tubules and sacs of the SR surround each and every myofibril just as the sleeve of a loosely crocheted sweater surrounds your arm, and its major role is to store calcium and to release it on demand.
Muscle Movements, Types, and Names
This section is a bit of a hodge-podge. It includes some topics that don’t really fit together, but they don’t fit anywhere else any better.
Types of Body Movements
Every one of our 600-odd skeletal muscles is attached to bone, or to other connective tissue structures, at no fewer than two points.
• Origin. One of these points, the origin, is attached to the immovable or less movable bone.
• Insertion. The insertion is attached to the movable bone, and when the muscle contracts, the insertion moves toward the origin.
• Flexion. Flexion is a movement, generally in the sagittal plane, that decrease the angle of the joint and brings two bones closer together; it is a type of hinge joints, but it is also common at ball-and-socket joints.